Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38760884

RESUMO

AIMS: Enterococcus faecalis (E. faecalis) is a leading cause of nosocomial infection and presents a wide spectrum of antibiotic resistance, being vancomycin-resistant Enterococcus (VRE) one of the most relevant. Synthetic antimicrobial peptides (SAMPs) are currently a promising option to overcome antimicrobial resistance. Thus, the purpose of this study was to assess the effect of eight SAMPs against vancomycin-resistant E. faecalis, as well as to investigate their mechanism of action and synergy with conventional antibiotics. METHODS AND RESULTS: Here, eight SAMPs, Mo-CBP3-PepI, Mo-CBP3-PepII, Mo-CBP3-PepIII, RcAlb-PepI, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA, were tested for antibacterial activity in vitro against E. faecalis (ATCC® 51299) through broth microdilution. A maximum of 48% of E. faecalis growth inhibition was achieved by treatment with SAMPs alone. However, when these peptides were combined with the antibiotic chloramphenicol, assessed by checkerboard method, the inhibition increased to 55%-76% of inhibition, two to three-folds of increase if compared to the effects of the compounds alone. Microscopic analysis showed that E. faecalis cells treated with a combination of SAMPs and chloramphenicol resulted in bacterial membrane damage. The biofilm inhibition maximum was 22% for SAMPs alone, when combined with chloramphenicol, the maximum increased to 33%. CONCLUSIONS: SAMPs and their combination with chloramphenicol demonstrate antibacterial activity against E. faecalis, possibly by inducing bacterial membrane damage.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Cloranfenicol , Sinergismo Farmacológico , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Enterococos Resistentes à Vancomicina , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Peptídeos Antimicrobianos/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Vancomicina/farmacologia
2.
Braz J Microbiol ; 54(4): 2641-2650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676406

RESUMO

Multidrug-resistant (MDR) bacteria are one problem in health since the therapeutic alternative are reduced. For this, the application of nanotechnology through functionalized nanoparticles, like a biogenic silver nanoparticle (Bio-AgNP), obtained by biological synthesis, emerges as a possible alternative against the MDR bacteria. This study aimed to evaluate the antibacterial and antibiofilm activity of Bio-AgNP obtained for biological synthesis by Fusarium oxysporum strain 551 against methicillin-resistant Staphylococcus aureus (MRSA) and MDR coagulase-negative Staphylococcus (CoNS) isolates. Bio-AgNP has activity against S. aureus ATCC 25904, Staphylococcus epidermidis ATCC 35984, and MDR isolates, with minimal inhibitory concentration (MIC) ranging from 3.75 to 15 µg.mL-1 and minimal bactericidal concentration (MBC) from 7.5 to 30 µg.mL-1. In the membrane leakage assay, it was observed that all concentrations tested led to proteins release from the cellular content dose-dependently, where the highest concentrations led to higher protein in the supernatant. The 2×MIC of Bio-AgNP killed ATCC 35984 after 6h of treatment, and ATCC 25904 and S. aureus (SA3) strains after 24h of treatment. The 4×MIC was bactericidal in 6h of treatment for all strains in the study. The biofilm of MDR isolates was inhibited in 80.94 to 100% and eradicated in 60 to 94%. The confocal laser scanning microscopy (CLSM) analysis demonstrated similar results to the antibiofilm assays. The Bio-AgNP has antibacterial and antibiofilm activity and can be a promising therapeutic alternative against MDR bacteria.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Prata/farmacologia , Coagulase , Resistência a Meticilina , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
Vaccine ; 39(39): 5626-5634, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400016

RESUMO

Whole-cell inactivated vaccines remain the only licensed vaccines used to control human and animal leptospirosis worldwide. Although they are protective against lethal infections, the efficacy of these vaccines has been divergent. The manufacturing process often involves the use of standard bacterial strains subjected to serial in vitro passages, with a risk of loss of virulence, and may affect the immunogenicity and consequently decrease protection. Thus, the objective of this study was to perform a comparative analysis of the efficacy of in-house bacterins produced with standard (avirulent) and virulent strains. Hamsters were immunized with killed bacteria produced using avirulent and virulent strains of L. interrogans serovars Copenhageni and Canicola. Vaccine efficacy was determined in terms of protection against lethal homologous or heterologous challenges. The results showed that immunization with both avirulent and virulent Canicola strains resulted in 100% protection against homologous challenge. Conversely, Copenhageni bacterins produced using an avirulent strain conferred only 25-37.5% protection against homologous challenge (P > 0.05), while virulent Copenhageni bacterin conferred 100% protection (P < 0.001). A single vaccine dose was sufficient to induce protection, and administration of a prime boost significantly reduced the bacterial load in the kidneys and improved the humoral immune response to the virulent Copenhageni strain. These findings suggest that the maintenance of virulent strains in bacterin formulations is essential for improving the immunogenicity and efficacy of leptospirosis vaccines.


Assuntos
Leptospira , Leptospirose , Animais , Vacinas Bacterianas , Cricetinae , Humanos , Leptospirose/prevenção & controle , Sorogrupo , Vacinação
4.
Biofouling ; 36(4): 416-427, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32441120

RESUMO

The objective of this study was to evaluate the physico-chemical and antimicrobial properties of a dual polymerization experimental endodontic sealer (E) and experimental sealers containing dibutyltin methacrylate (Sn2+) (ETs) or calcium methacrylate (Ca2+) (ECs). The pH and ion release levels of the sealers were measured. The dimensional stability was evaluated in accordance with ISO 6876. Biofilm growth inhibition was evaluated using confocal laser scanning microscopy (CLSM). Biofilm viability analysis was performed using the SYTO 9 technique. The shelf life was evaluated through the degree of conversion and film thickness tests after the sealers had been stored for different periods of time. For statistical analysis, ANOVA and Tukey's post hoc test were used, with a significance level of 5%. ETs revealed better anti-biofilm potential after 15 days than that of the controls. The degree of conversion was reduced after the shelf-life period. The addition of calcium and dibutyltin methacrylate improved the anti-biofilm properties of the experimental endodontic sealer without impairing their physico-chemical properties.


Assuntos
Anti-Infecciosos , Metacrilatos , Materiais Restauradores do Canal Radicular , Antibacterianos , Biofilmes , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA