Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329121

RESUMO

Aging-related abnormalities in gut microbiota are associated with cognitive decline, depression, and anxiety, but underlying mechanisms remain unstudied. Here, our study demonstrated that transplanting old gut microbiota to young mice induced inflammation in the gut and brain coupled with cognitive decline, depression, and anxiety. We observed diminished mucin formation and increased gut permeability ("leaky gut") with a reduction in beneficial metabolites like butyrate because of decline in butyrate-producing bacteria in the aged gut microbiota. This led to suppressed expression of butyrate receptors, free fatty acid receptors 2 and 3 (FFAR2/3). Administering butyrate alleviated inflammation, restored mucin expression and gut barriers, and corrected brain dysfunction. Furthermore, young mice with intestine-specific loss of FFAR2/3 exhibited gut and brain abnormalities akin to those in older mice. Our results demonstrate that reduced butyrate-producing bacteria in aged gut microbiota result in low butyrate levels and reduced FFAR2/3 signaling, leading to suppressed mucin formation that increases gut permeability, inflammation, and brain abnormalities. These findings underscore the significance of butyrate-FFAR2/3 agonism as a potential strategy to mitigate aged gut microbiota-induced detrimental effects on gut and brain health in older adults.


Assuntos
Butiratos , Microbioma Gastrointestinal , Camundongos , Animais , Butiratos/metabolismo , Butiratos/farmacologia , Inflamação , Encéfalo/metabolismo , Envelhecimento , Mucinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Neuromolecular Med ; 23(4): 540-548, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33830475

RESUMO

The present in vitro study showed that IL-2/IL-2R antibody complex facilitates Treg-induced neuroprotection in the oxygen glucose deprivation/reoxygenation (OGD/R) model of stroke. First, we examined the role of IL-2/IL-2R-treated Tregs in OGD/R-exposed rat primary cortical cells (PCCs), which represent the cell type of the ischemic gray matter in the stroke brain. Here, OGD/R induced cell death, which was attenuated by Tregs and more robustly by IL-2/IL-2R-treated Tregs, but not by IL-2/IL-2R treatment alone. Second, we next assessed IL-2/IL-2R effects in OGD/R-exposed human oligodendrocyte progenitor cells (OPCs), which correspond to the white matter injury after stroke. Results revealed that a similar pattern neuroprotection as seen in the gray matter, in that OGD/R triggered cell death, which was ameliorated by Tregs and more effectively by IL-2/IL-2R-treated Tregs, but IL-2/IL-2R treatment alone was not therapeutic. Third, as we begin to understand the mechanism underlying IL-2/IL-2R engagement of Tregs, we investigated the inflammatory response in OGD/R-exposed human neural progenitor cells (NPCs), which recapitulate both ischemic gray and white matter damage in stroke. Similar to PCCs and OPCs, OGD/R produced cell death and was blocked by Tregs and more efficiently by IL-2/IL-2R-treated Tregs, whereas IL-2/IL-2R treatment alone did not alter the ischemic insult. Moreover, the inflammatory marker, TNF-α, was upregulated after OGD/R, dampened by both Tregs and more efficiently by IL-2/IL-2R-treated Tregs but more pronounced in the latter, and not affected by IL-2/IL-2R treatment alone, suggesting IL-2/IL-2R-Treg-mediated modulation of inflammatory response in stroke. Altogether, these observations support the use of IL-2/IL-2R treatment in enhancing the anti-inflammatory effects of Tregs in stroke.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Glucose/metabolismo , Inflamação/metabolismo , Interleucina-2 , Neuroproteção , Oxigênio , Ratos , Traumatismo por Reperfusão/prevenção & controle , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa
3.
Stem Cell Rev Rep ; 15(2): 256-275, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739275

RESUMO

Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.


Assuntos
Biomarcadores/análise , Células Progenitoras Endoteliais/citologia , Inflamação/complicações , Neovascularização Patológica/prevenção & controle , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia , Animais , Comportamento Animal , Técnicas de Cocultura , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
4.
Oncotarget ; 8(61): 102820-102834, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262526

RESUMO

The major pathological consequences of cerebral ischemia are characterized by neurological deficits commonly ascribed to the infarcted tissue and its surrounding region, however, brain areas, as well as peripheral organs, distal from the original injury may manifest as subtle disease sequelae that can increase the risks of co-morbidities complicating the disease symptoms. To evaluate the vulnerability of the cerebellum and the heart to secondary injuries in the late stage of transient global ischemia (TGI) model in non-human primates (NHP), brain and heart tissues were collected at six months post-TGI. Unbiased stereological analyses of immunostained tissues showed significant Purkinje cells loss in lobule III and lobule IX of the TGI cerebellum relative to sham cerebellum, with corresponding upregulation of inflammatory and apoptotic cells. Similarly, TGI hearts revealed significant activation of inflammatory and apoptotic cells relative to sham hearts. Aberrant inflammation and apoptosis in the cerebellum and the heart of chronic TGI-exposed NHPs suggest distal secondary injuries manifesting both centrally and peripherally. These results advance our understanding on the sustained propagation of chronic secondary injuries after TGI, highlighting the need to develop therapeutic interventions targeting the brain, as well as the heart, in order to abrogate cerebral ischemia and its related co-morbidities.

5.
Front Cell Dev Biol ; 5: 51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540289

RESUMO

Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA