Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
Sci Data ; 11(1): 1014, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294152

RESUMO

Wet Age-related Macular Degeneration (wet AMD) is a common ophthalmic disease that significantly impacts patients' vision. Optical coherence tomography (OCT) examination has been widely utilized for diagnosing, treating, and monitoring wet AMD due to its cost-effectiveness, non-invasiveness, and repeatability, positioning it as the most valuable tool for diagnosis and tracking. OCT can provide clear visualization of retinal layers and precise segmentation of lesion areas, facilitating the identification and quantitative analysis of abnormalities. However, the lack of high-quality datasets for assessing wet AMD has impeded the advancement of related algorithms. To address this issue, we have curated a comprehensive wet AMD OCT Segmentation Dataset (AMD-SD), comprising 3049 B-scan images from 138 patients, each annotated with five segmentation labels: subretinal fluid, intraretinal fluid, ellipsoid zone continuity, subretinal hyperreflective material, and pigment epithelial detachment. This dataset presents a valuable opportunity to investigate the accuracy and reliability of various segmentation algorithms for wet AMD, offering essential data support for developing AI-assisted clinical applications targeting wet AMD.


Assuntos
Algoritmos , Tomografia de Coerência Óptica , Degeneração Macular Exsudativa , Humanos , Degeneração Macular Exsudativa/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/patologia
2.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4387-4395, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307775

RESUMO

Aconitum vilmorinianum is an authentic and superior medicinal herbal in Yunnan, which is rich in yunaconitine and other diterpene alkaloids. Diterpene alkaloids are its main active components. Farnesyl pyrophosphate synthase(FPS) is a key enzyme in the terpene biosynthetic pathway and plays an important role in diterpene alkaloid biosynthesis. Functional studies of FPS help to reveal the molecular mechanism of diterpene alkaloid biosynthesis. In this study, one FPS gene(AvFPS) was selected based on the transcriptome data of A. vilmorinianum. Its full-length sequence was cloned, and bioinformatic analysis, functional verification, and gene expression analysis were performed. The open reading frame(ORF) of AvFPS was 1 056 bp, encoding 351 amino acids. Its molecular weight was 41 kDa. AvFPS had two typical conserved functional domains of isopentenyl transferase, " DDIMD" and " DDYXD". The recombinant protein of AvFPS was expressed in Escherichia coli, and purified recombinant protein was used for in vitro enzymatic reaction. The results revealed that AvFPS was able to catalyze the synthesis of farnesyl pyrophosphate(FPP). The results of qRT-PCR analysis showed that AvFPS was expressed in the roots, stems, leaves, and flowers of A. vilmorinianum, with the highest expression level in the roots. The expression level of AvFPS was significantly up-regulated by MeJA induction. This study clarified the catalytic function of AvFPS, revealed the expression pattern of AvFPS in different tissue, as well as at different time induced by MeJA, and provided a reference for a deeper understanding of the function of FPS in the biosynthesis of diterpenoid components.


Assuntos
Aconitum , Clonagem Molecular , Geraniltranstransferase , Proteínas de Plantas , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Geraniltranstransferase/química , Aconitum/genética , Aconitum/enzimologia , Aconitum/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência
3.
Sci Rep ; 14(1): 21404, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271920

RESUMO

Accurately detecting voltage faults is essential for ensuring the safe and stable operation of energy storage power station systems. To swiftly identify operational faults in energy storage batteries, this study introduces a voltage anomaly prediction method based on a Bayesian optimized (BO)-Informer neural network. Firstly, the temporal characteristics and actual data collected by the battery management system (BMS) are considered to establish a long-term operational dataset for the energy storage station. The Pearson correlation coefficient (PCC) is used to quantify the correlations between these data. Secondly, an Informer neural network with BO hyperparameters is used to build the voltage prediction model. The performance of the proposed model is assessed by comparing it with several state-of-the-art models. With a 1 min sampling interval and one-step prediction, trained on 70% of the available data, the proposed model reduces the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) of the predictions to 9.18 mV, 0.0831 mV, and 6.708 mV, respectively. Furthermore, the influence of different sampling intervals and training set ratios on prediction results is analyzed using actual grid operation data, leading to a dataset that balances efficiency and accuracy. The proposed BO-based method achieves more precise voltage abnormity prediction than the existing methods.

4.
Heliyon ; 10(17): e37010, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286172

RESUMO

Hepatotoxicity caused by the anticancer medication oxaliplatin (OXA) significantly restricts its clinical use and raises the risk of liver damage. Huaier, a fungus found in China, has been demonstrated to have various beneficial effects in adjuvant therapy for cancer. However, the preventive impact of Huaier against OXA-induced hepatotoxicity is still unknown. The potential molecular pathways behind the hepatoprotective activity of Huaier against OXA-induced hepatotoxicity were investigated in the current study Mice were intraperitoneally injected with 10 mg/kg of OXA once a week for six consecutive weeks to establish a liver injury model. Huaier (2 g/kg, 4 g/kg, and 8 g/kg) was administered weekly to mice by gavage for six weeks. Commercial kits were used to determine the contents of glutathione, catalase, superoxide dismutase, and malondialdehyde. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the impact of Huaier therapy on the expression of the PI3K pathway. Huaier exhibited a good protective effect on OXA-induced hepatotoxicity in a dose-dependent manner, which was connected to the suppression of oxidative stress, according to the results of biochemical index detection and histological staining analysis. In addition, Huaier could counteract the OXA-induced suppression of the PI3K/AKT signaling pathway. Moreover, the hepatoprotective effect and PI3K activation of Huaier were eradicated by LY294002. These findings imply that by decreasing oxidative stress, Huaier can minimize OXA-induced liver injury, establishing the groundwork for Huaier to lessen chemotherapy-induced hepatotoxicity in clinical practice.

6.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1635-1644, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235022

RESUMO

Accurate assessment of material and energy exchange between land and atmosphere is essential for water resources management and sustainable development of agriculture. To understand the characteristics of energy distribution and the dynamic change process of water and heat fluxes within the maize farmland ecosystem in the old course of Yellow River and their response to meteorological factors, we utilized the eddy covariance measurements and the full-element automatic weather station to continuously observe energy fluxes and conventional meteorological elements of summer maize farmland in the old course of Yellow River during 2019-2020. We analyzed the variation of energy fluxes and the effects of environmental factors, such as temperature, precipitation, and wind speed. Additionally, we calculated the energy closure rate and the proportion of energy distribution during the growth stage. The results showed that the peaks of net radiation, sensible heat flux, and latent heat flux occurred between 11:00 and 14:00, and the peak of soil heat flux occurred between 14:00 and 15:00. In terms of energy distribution, energy consumption of summer maize farmland during the whole growth period was dominated by latent heat flux and sensible heat flux. Energy was mainly consumed by sensible heat flux at sowing-emergence stage, accounting for 37.1% of net radiation, respectively. Energy in the rest of growth stages was dominated by latent heat flux. The energy closure rate during the whole growth period was better, with a coefficient of determination of 0.83, and the closure rate was higher in day and lower at night. Precipitation affected latent heat flux and sensible heat flux, and latent heat flux was more sensitive to precipitation. The increase of latent heat flux after rainfall was lower in late growth stage than in early growth stage. During the whole growth period of summer maize, solar radiation was the most significant meteorological factor affecting both sensible heat flux and latent heat flux, followed by vapor pressure deficit. The contribution of temperature and vapor pressure deficit to latent heat flux was significantly higher than sensible heat flux, while the relative contribution of wind speed, relative humidity, and solar radiation to latent heat flux was lower than sensible heat flux. Leaf area index and fractional vegetation cover had a significant positive correlation with latent heat flux and a significant negative correlation with sensible heat flux. Our results could deepen the understanding of water and heat transfer law of summer maize farmland in the old course of Yellow River, providing a theoretical basis for efficient water use of crops.


Assuntos
Ecossistema , Temperatura Alta , Rios , Estações do Ano , Zea mays , Zea mays/crescimento & desenvolvimento , China , Água/análise
7.
Acta Pharm Sin B ; 14(8): 3362-3384, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220863

RESUMO

Drug discovery is a sophisticated process that incorporates scientific innovations and cutting-edge technologies. Compared to traditional bioactivity-based screening methods, encoding and display technologies for combinatorial libraries have recently advanced from proof-of-principle experiments to promising tools for pharmaceutical hit discovery due to their high screening efficiency, throughput, and resource minimization. This review systematically summarizes the development history, typology, and prospective applications of encoding and displayed technologies, including phage display, ribosomal display, mRNA display, yeast cell display, one-bead one-compound, DNA-encoded, peptide nucleic acid-encoded, and new peptide-encoded technologies, and examples of preclinical and clinical translation. We discuss the progress of novel targeted therapeutic agents, covering a spectrum from small-molecule inhibitors and nonpeptidic macrocycles to linear, monocyclic, and bicyclic peptides, in addition to antibodies. We also address the pending challenges and future prospects of drug discovery, including the size of screening libraries, advantages and disadvantages of the technology, clinical translational potential, and market space. This review is intended to establish a comprehensive high-throughput drug discovery strategy for scientific researchers and clinical drug developers.

8.
J Colloid Interface Sci ; 678(Pt B): 20-29, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236351

RESUMO

The off-stoichiometric compound Na3.12Fe2.44(P2O7)2 (NFPO) is a highly promising, cost-effective, and structurally robust cathode material for sodium-ion batteries (SIBs). However, the slowing Na-ion migration kinetics and poor interface stability have seriously limited its rate capability and air stability. In this work, we successfully synthesis a sodium titanium pyrophosphate (NaTiP2O7 donated as NTPO) coating NFPO (denoted as NFPO-NTPO) cathode material via a liquid phase coating method for SIBs. After optimizing NTPO content, at 0.1C, NFPO-NTPO-4 % cathode achieves a reversible specific capacity of 108.4 mAh g-1. Remarkably, it maintains 88.39 % capacity at 10C comparing to 0.1C and stabilizes over 3000 cycles with 92.66 % retention rate. Moreover, it retains 88.89 % capacity after 5000 cycles at 20C, even after 28 days of air exposure. The NFPO-Ti cathode, alongside the complete battery system, exhibits remarkable electrochemical performance across a broad temperature range spanning from -40 to 60 ℃.

9.
Strahlenther Onkol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259349

RESUMO

PURPOSE: To assess the value of glutamate chemical exchange saturation transfer (GluCEST) after whole-brain radiotherapy (WBRT) as an imaging marker of radiation-induced brain injury (RBI) and to preliminarily show the feasibility of multiparametric MRI-guided organ at risk (OAR) avoidance. METHODS: Rats were divided into two groups: the control (CTRL) group (n = 9) and the RBI group (n = 9). The rats in the RBI group were irradiated with an X­ray radiator and then subjected to a water maze experiment 4 weeks later. In combination with high-performance liquid chromatography (HPLC), we evaluated the value of GluCEST applied to glutamate changes for RBI and investigated the effect of such changes on glutamatergic neuronal function. RESULTS: The average GluCEST values were markedly lower in the hippocampus and cerebral cortex. Positive correlations were observed between GluCEST values and regional homogeneity (ReHo) values in both the hippocampus and the cerebral cortex. HPLC showed a positive correlation with GluCEST values in the hippocampus. GluCEST values were positively correlated with spatial memory. CONCLUSION: GluCEST MRI provides a visual assessment of glutamate changes in RBI rats for monitoring OAR cognitive toxicity reactions and may be used as a biomarker of OAR avoidance as well as metabolism to facilitate monitoring and intervention in radiation damage that occurs after radiotherapy.

10.
Adv Mater ; : e2408016, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165073

RESUMO

Osteosarcoma is one of the most dreadful bone neoplasms in young people, necessitating the development of innovative therapies that can effectively eliminate tumors while minimizing damage to limb function. An ideal therapeutic strategy should possess three essential capabilities: antitumor effects, tissue-protective properties, and the ability to enhance osteogenesis. In this study, self-assembled Ce-substituted molybdenum blue (CMB) nanowheel crystals are synthesized and loaded onto 3D-printed bioactive glass (CMB@BG) scaffolds to develop a unique three-in-one treatment approach for osteosarcoma. The CMB@BG scaffolds exhibit outstanding photothermally derived tumor ablation within the near-infrared-II window due to the surface plasmon resonance properties of the CMB nanowheel crystals. Furthermore, the photothermally synergistic catalytic effect of CMB promotes the rapid scavenging of reactive oxygen species caused by excessive heat, thereby suppressing inflammation and protecting surrounding tissues. The CMB@BG scaffolds possess pro-proliferation and pro-differentiation capabilities that efficiently accelerate bone regeneration within bone defects. Altogether, the CMB@BG scaffolds that combine highly efficient tumor ablation, tissue protection based on anti-inflammatory mechanisms, and enhanced osteogenic ability are likely to be a point-to-point solution for the comprehensive therapeutic needs of osteosarcoma.

11.
Ecol Evol ; 14(8): e70202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39184570

RESUMO

The development of hydroelectric projects has adversely affected the reproductive activities of downstream fish species. To facilitate the natural reproduction of fish and restore spawning grounds post-dam construction, it is imperative to explore the ecological factors crucial for their reproduction. Currently, various research methods with different advantages and limitations are employed for this purpose. Using identified spawning locations and periods as clues, we quantitatively investigate the flow velocity, water depth, water temperature, and riverbed substrate required for spawning. The results are validated using habitat simulation methods, aiming to establish a more scientific approach to explore ecological factors affecting fish reproduction. This study provides a more scientific, systematic, and detailed report on the ecological factors required for the spawning of Gymnocypris eckloni: flow velocity ranging from 0.19 to 0.97 m/s, water depth from 0.28 to 1.12 m, water temperature between 11.4 and 15.2°C, and predominantly gravel substrate. The reliability of the results was verified in another spawning ground, with good verification results. This research provides crucial data for the bio-mimetic reproductive technology of Gymnocypris eckloni and the restoration of spawning grounds for natural fish reproduction post-dam construction. It addresses the lack of suitable ecological factor data for protective fish species in the upper reaches of the Yellow River. The method exhibits strong scientific, accurate, and implementable characteristics.

12.
Med Res Rev ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119702

RESUMO

Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.

13.
Cancer Med ; 13(13): e7424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988047

RESUMO

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS: Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS: MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS: MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Ribossômicas , Neoplasias Gástricas , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Animais , Camundongos , Prognóstico , Feminino , Masculino , Linhagem Celular Tumoral , Progressão da Doença , Pessoa de Meia-Idade , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Apoptose , Camundongos Nus , Movimento Celular , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
14.
J Colloid Interface Sci ; 676: 417-424, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033676

RESUMO

Colloidal quantum dot solar cells (CQDSCs) have received great attention in the development of scalable and stable photovoltaic devices. Despite the high power-conversion-efficiency (PCE) reported, stability investigations are still limited and the exact degradation mechanisms of CQDSCs remain unclear under different atmosphere conditions. In this study, the atmospheric influence on the ZnO electron transport layer material (ETL), halide-passivated lead sulfide CQDs (PbS-PbI2) photoactive layer material and 1,2-ethanedithiol-PbS CQDs (PbS-EDT) hole transport material on device stability in PbS CQDSCs is investigated. It was found that O2 had negligible influence on PbS-PbI2, but it did induce the increase in work function of ZnO ETL and PbS-EDT layers. Notably, the increase of the ZnO work function (WFZnO) induces the formation of interface barrier between ZnO and PbS-PbI2, leading to a deterioration in device efficiency. By further replacing ZnO ETL with SnO2, a multi-interface collaborative CQDSC was constructed to realize the PCE with high stability. This study identifies the efficiency evolution that is inherent in CQDSCs under different atmospheric conditions.

15.
Heliyon ; 10(10): e31586, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831807

RESUMO

Background: Cyclin B2 (CCNB2) is associated with cell cycle progression, acting as a cell cycle checkpoint in progression of G2/M transition. In many cancer patients, it has been observed that overexpression of CCNB2 enhances tumor invasiveness and leads to adverse prognosis. However, the association of CCNB2 with the tumor microenvironment remains unclear. Therefore, it is necessary to clarify the associations of CCNB2 with the immune status and prognosis of breast carcinoma (BRCA). Methods: Gene expression and clinical data for BRCA were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases, followed by association analyses of CCNB2 expression with prognosis, immune cell infiltration, and immune checkpoints. This study further performed drug sensitivity analysis and constructed a prognostic nomogram for CCNB2. Results: 3619 differentially expressed genes were identified in BRCA, including CCNB2 that emerged as a key gene in the network. High CCNB2 expression correlated with poor prognosis. Functional analysis demonstrated enrichment of CCNB2 co-expressed genes with the cell cycle, cancer progression, cell energy, and immune pathways. Microsatellite instability and tumor mutation burden analyses indicated CCNB2 as a candidate immunotherapy target. Tumor-infiltrating myeloid-derived suppressor cells, regulatory T cells, and T helper 2 cells were associated with CCNB2-related tumor progression and metastasis. CCNB2 expression positively correlated with immune checkpoints, indicating that high CCNB2 expression might facilitate tumor immune escape. Tumors with high CCNB2 expression showed sensitivity to phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin and cyclin-dependent kinase (CDK) 4/6 inhibitors, and the nomogram had good prognostic predictive ability for patients with BRCA. Conclusions: CCNB2 may play a crucial role in tumorigenesis and serve as an independent prognostic biomarker associated with tumor microenvironment, tumor immune infiltration and immunotherapy in BRCA.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38917286

RESUMO

Uncovering novel drug-drug interactions (DDIs) plays a pivotal role in advancing drug development and improving clinical treatment. The outstanding effectiveness of graph neural networks (GNNs) has garnered significant interest in the field of DDI prediction. Consequently, there has been a notable surge in the development of network-based computational approaches for predicting DDIs. However, current approaches face limitations in capturing the spatial relationships between neighboring nodes and their higher-level features during the aggregation of neighbor representations. To address this issue, this study introduces a novel model, KGCNN, designed to comprehensively tackle DDI prediction tasks by considering spatial relationships between molecules within the biomedical knowledge graph (BKG). KGCNN is built upon a message-passing GNN framework, consisting of propagation and aggregation. In the context of the BKG, KGCNN governs the propagation of information based on semantic relationships, which determine the flow and exchange of information between different molecules. In contrast to traditional linear aggregators, KGCNN introduces a spatial-aware capsule aggregator, which effectively captures the spatial relationships among neighboring molecules and their higher-level features within the graph structure. The ultimate goal is to leverage these learned drug representations to predict potential DDIs. To evaluate the effectiveness of KGCNN, it undergoes testing on two datasets. Extensive experimental results demonstrate its superiority in DDI predictions and quantified performance.

17.
J Environ Manage ; 365: 121620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941848

RESUMO

Accurate quantification of flow dynamics during reservoir ecological scheduling hinders the maintenance of normal reproductive activities in downstream riverine fish. This study proposed a quantitative method for determining the flow rate changes in reservoir ecological scheduling. The approach utilized the daily flow rate and daily flow-rate increment to characterize the flow process. Adopting the perspective of shifting spawning grounds of adhesive egg-laying fish species in response to flow rate variations, we introduced the Spawning Ground Overlap Rate as an indicator and utilized it to determine flow rate changes. Focusing on the downstream area of the Yangqu Hydropower Station in the upper reaches of the Yellow River, we calculated the distribution of spawning grounds and the Spawning Ground Overlap Rate in the region. We set a threshold for the Spawning Ground Overlap Rate to restrict the flow rate changes. The results indicated that during the fish spawning period, the ecological flow range in the downstream area of the Yangqu Dam was 480-1200 m3/s. It was required to maintain a daily flow rate change of less than 49.45 m3/(s·d) and a maximum seven-day flow difference of less than 227.76 m3/s to maintain the optimal level of spawning ground overlap rate. Additionally, it was necessary to keep the daily flow rate change below 123.83 m3/(s·d) and the maximum seven-day flow difference below 368.84 m3/s to maintain the minimum spawning ground overlap rate. The findings provide foundational data for determining flow dynamics during the ecological scheduling of the spawning period for viscous-spawning fish.


Assuntos
Rios , Animais , Peixes/fisiologia , Reprodução , Ecossistema , Ecologia , China , Movimentos da Água
18.
J Hazard Mater ; 476: 134943, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38936186

RESUMO

Developing fast, accurate and sensitive triethylamine gas sensors with low detection limits is paramount to ensure the safety of workers and the public. However, sensors based on single metal oxide materials still suffer from drawbacks such as low response sensitivity and long response and recovery times. To address these challenges, in this work, a series of mesoporous CdO/CdGa2O4 microspheres were synthesized. We optimized the sensor's sensing performance to triethylamine by fine-tuning the ratio of CdO to CdGa2O4. Among them, CdO:3CdGa2O4-based sensor demonstrates a rapid response time of 2 s to detect 100 ppm of triethylamine, with a high response value of 211 and exceptional selectivity. Furthermore, it exhibits a low detection limit of 20 ppb for triethylamine, making it suitable for practically testing fish freshness. Crucially, electron transfer between the heterojunctions increases the chemically adsorbed oxygen on the materials' surface, thereby enhancing the sensor's response sensitivity to triethylamine. This discovery provides new insights and methodologies for the design of highly efficient triethylamine gas sensors.

19.
Int J Biol Macromol ; 274(Pt 1): 133398, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917925

RESUMO

Sodium alginate (SA) is widely used in the food, biomedical, and chemical industries due to its biocompatibility, biodegradability, and excellent film-forming properties. This article introduces a simple method for preparing uniform alginate-based packaging materials with exceptional properties for fruit preservation. The alginate was uniformly crosslinked by gradually releasing calcium ions triggered by the sustained hydrolysis of gluconolactone (GDL). A cinnamaldehyde (CA) emulsion, stabilized by xanthan without the use of traditional surfactants, was tightly incorporated into the alginate film to enhance its antimicrobial, antioxidant, and UV shielding properties. The alginate-based film effectively blocked ultraviolet rays in the range of 400-200 nm, while allowing for a visible light transmittance of up to 70 %. Additionally, it showed an increased water contact angle and decreased water vapor permeability. The alginate-based film was also employed in the preparation of coated paper through the commonly used coating process in the papermaking industry. The alginate-based material displayed excellent antioxidant properties and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea, successfully extending the shelf life of strawberries to 7 days at room temperature. This low-cost and facile method has the potential to drive advancements in the food and biomedical fields by tightly incorporating active oil onto a wide range of biomacromolecule substrates.


Assuntos
Acroleína , Alginatos , Antioxidantes , Frutas , Alginatos/química , Frutas/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Escherichia coli/efeitos dos fármacos
20.
Chin J Integr Med ; 30(10): 886-895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38753274

RESUMO

OBJECTIVE: To study the effect of Shexiang Tongxin Dropping Pill (STDP) on angiogenesis in diabetic cardiomyopathy mice with coronary microcirculation dysfunction (CMD). METHODS: According to a random number table, 6 of 36 SPF male C57BL/6 mice were randomly selected as the control group, and the remaining 30 mice were injected with streptozotocin intraperitoneally to replicate the type 1 diabetes model. Mice successfully copied the diabetes model were randomly divided into the model group, STDP low-dose group [15 mg/(kg·d)], medium-dose group [30 mg/(kg·d)], high-dose group [60 mg/(kg·d)], and nicorandil group [15 mg/(kg·d)], 6 in each group. The drug was given by continuous gavage for 12 weeks. The cardiac function of mice in each group was detected at the end of the experiment, and coronary flow reserve (CFR) was detected by chest Doppler technique. Pathological changes of myocardium were observed by hematoxylin-eosin staining, collagen fiber deposition was detected by masson staining, the number of myocardial capillaries was detected by platelet endothelial cell adhesion molecule-1 staining, and the degree of myocardial hypertrophy was detected by wheat germ agglutinin staining. The expression of the vascular endothlial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) signaling pathway-related proteins in myocardial tissue was detected by Western blot. RESULTS: Compared with the model group, medium- and high-dose STDP significantly increased the left ventricular ejection fraction and left ventricular fraction shortening (P<0.01), obviously repaired the disordered cardiac muscle structure, reduced myocardial fibrosis, reduced myocardial cell area, increased capillary density, and increased CFR level (all P<0.01). Western blot showed that high-dose STDP could significantly increase the expression of VEGF and promote the phosphorylation of vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase, protein kinase B, and eNOS (P<0.05 or P<0.01). CONCLUSION: STDP has a definite therapeutic effect on diabetic CMD, and its mechanism may be related to promoting angiogenesis through the VEGF/eNOS signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Microcirculação , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Medicamentos de Ervas Chinesas/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microcirculação/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Circulação Coronária/efeitos dos fármacos , Camundongos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA