Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Angew Chem Int Ed Engl ; 63(38): e202407810, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38957933

RESUMO

Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i)-ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δϵd) should reduce |ΔGH-metal(i)-ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δϵd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12 mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4 kWh kgamm -1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.

2.
Molecules ; 29(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998965

RESUMO

In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 µg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 µg/mL and 0.46 µg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Laticínios , Lactoferrina , Lactoferrina/análise , Lactoferrina/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Laticínios/análise , Fluorescência , Limite de Detecção , Espectrometria de Fluorescência/métodos , Análise de Alimentos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos
3.
Small ; : e2403674, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072991

RESUMO

Semi-solid lithium-ion batteries (SSLIBs) based on "slurry-like" electrodes hold great promise to enable low-cost and sustainable energy storage. However, the development of the SSLIBs has long been hindered by the lack of high-performance anodes. Here the origin of low initial Coulombic efficiency (iCE, typically <60%) is elucidated in the graphite-based semi-solid anodes (in the non-flowing mode) and develop rational strategies to minimize the irreversible capacity loss. It is discovered that Ketjen black (KB), a nanoscale conductive additive widely used in SSLIB research, induces severe electrolyte decomposition during battery charge due to its large surface area and abundant surface defects. High iCEs up to 92% are achieved for the semi-solid graphite anodes by replacing KB with other low surface-area, low-defect conductive additives. A semi-solid full battery (LiFePO4 vs graphite, in the non-flowing mode) is further demonstrated with stable cycle performance over 100 cycles at a large areal capacity of 6 mAh cm-2 and a pouch-type semi-solid full cell that remains functional even when it is mechanically abused. This work demystifies the SSLIBs and provides useful physical insights to further improve their performance and durability.

4.
Sci Total Environ ; 945: 173951, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897480

RESUMO

Monitoring the variations of lake water quality is essential for urban water security and sustainable eco-environment health. However, it is challenging to investigate the water quality of urban lakes at large scales due to the need for large-amount in situ data with diverse optical properties for developing the remote sensing inversion algorithms. Forel-Ule Index (FUI), a proxy of quantifying water color, whose calculation does not require in situ data of specific properties, can comprehensively reflect water quality conditions. However, the spatial and temporal distribution of water color in Chinese urban lakes is still poorly understood. To fill this research gap, this study investigated the spatial distribution of water color in 523 urban lakes (area > 0.5 km2) in China using the FUI derived from the high-quality Multi-Spectral Instrument (MSI) data onboard Sentinel-2 during the ice-free period (April-October) from 2019 to 2022. The monthly and seasonal variation patterns of water color in urban lakes were also analyzed. Our results show that green domain is the most common color of urban lakes, with about 86 % of urban lakes in China being green, and non-green lakes accounting for only 14 % of the total number of lakes. The monthly variation of FUI in urban lakes across the country and multiple geographic regions is basically the same. The monthly average FUI first increases, then decreases, and then rebounds. We also found that the seasonal variation of water color in most urban lakes in southern and northern China is opposite. This study helps to comprehensively understand the spatial and temporal variation of water color and quality of urban lakes in China, providing key basic information for the protection and governance of urban lakes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38862429

RESUMO

DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years. In this study, we developed a single-molecule desktop sequencer, GenoCare 1600 (GenoCare), which utilizes amplification-free library preparation and two-color sequencing-by-synthesis chemistry, making it more user-friendly compared with previous single-molecule sequencing platforms for clinical use. Using the GenoCare platform, we sequenced an Escherichia coli standard sample and achieved a consensus accuracy exceeding 99.99%. We also evaluated the sequencing performance of this platform in microbial mixtures and coronavirus disease 2019 (COVID-19) samples from throat swabs. Our findings indicate that the GenoCare platform allows for microbial quantitation, sensitive identification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and accurate detection of virus mutations, as confirmed by Sanger sequencing, demonstrating its remarkable potential in clinical application.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Escherichia coli/genética , Mutação
6.
Nature ; 630(8015): 70-76, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811730

RESUMO

Colour centres in diamond have emerged as a leading solid-state platform for advancing quantum technologies, satisfying the DiVincenzo criteria1 and recently achieving quantum advantage in secret key distribution2. Blueprint studies3-5 indicate that general-purpose quantum computing using local quantum communication networks will require millions of physical qubits to encode thousands of logical qubits, presenting an open scalability challenge. Here we introduce a modular quantum system-on-chip (QSoC) architecture that integrates thousands of individually addressable tin-vacancy spin qubits in two-dimensional arrays of quantum microchiplets into an application-specific integrated circuit designed for cryogenic control. We demonstrate crucial fabrication steps and architectural subcomponents, including QSoC transfer by means of a 'lock-and-release' method for large-scale heterogeneous integration, high-throughput spin-qubit calibration and spectral tuning, and efficient spin state preparation and measurement. This QSoC architecture supports full connectivity for quantum memory arrays by spectral tuning across spin-photon frequency channels. Design studies building on these measurements indicate further scaling potential by means of increased qubit density, larger QSoC active regions and optical networking across QSoC modules.

7.
ACS Nano ; 18(20): 13106-13116, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722252

RESUMO

Layered oxide cathodes of sodium-ion batteries (SIBs) are considered promising candidates due to their fascinating high capacity, good cyclability, and environmental friendliness. However, the air sensitivity of layered SIB cathodes causes high electrode manufacturing costs and performance deterioration, hampering their practical application. Herein, a commercial O3-type layered Na(Ni1/3Fe1/3Mn1/3)O2 (NNFM) material is adopted to investigate the air corrosive problem and the suppression strategy. We reveal that once the layered material comes in contact with ambient air, cations migrate from transition metal (TM) layers to sodium layers at the near surface, although Na+ and TM ions show quite different ion radii. Experimental results and theoretical calculations show that more Ni/Na disorder occurs in the air-exposed O3-NNFM materials, owing to a lower Ni migration energy barrier. The cation mixing results in detrimental structural distortion, along with the formation of residual alkali species on the surface, leading to high impedance for Na+ diffusion during charge/discharge. To tackle this problem, an ultrathin and uniform hydrophobic molecular layer of perfluorodecyl trimethoxysilane is assembled on the O3-NNFM surface, which significantly suppresses unfavorable chemistry and structure degradation during air storage. The in-depth understanding of the structural degradation mechanism and suppression strategy presented in this work can facilitate high-energy cathode manufacturing from the perspective of future practical implementation and commercialization.

8.
Adv Mater ; 36(29): e2400502, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651254

RESUMO

Chemotherapy of glioblastoma (GBM) has not yielded success due to inefficient blood-brain barrier (BBB) penetration and poor glioma tissue accumulation. Aerobic glycolysis, as the main mode of energy supply for GBM, safeguards the rapid growth of GBM while affecting the efficacy of radiotherapy and chemotherapy. Therefore, to effectively inhibit aerobic glycolysis, increase drug delivery efficiency and sensitivity, a novel temozolomide (TMZ) nanocapsule (ApoE-MT/siPKM2 NC) is successfully designed and prepared for the combined delivery of pyruvate kinase M2 siRNA (siPKM2) and TMZ. This drug delivery platform uses siPKM2 as the inner core and methacrylate-TMZ (MT) as the shell component to achieve inhibition of glioma energy metabolism while enhancing the killing effect of TMZ. By modifying apolipoprotein E (ApoE), dual targeting of the BBB and GBM is achieved in a "two birds with one stone" style. The glutathione (GSH) responsive crosslinker containing disulfide bonds ensures "directional blasting" cleavage of the nanocapsules to release MT and siPKM2 in the high GSH environment of glioma cells. In addition, in vivo experiments verify that ApoE-MT/siPKM2 NC has good targeting ability and prolongs the survival of tumor-bearing nude mice. In summary, this drug delivery system provides a new strategy for metabolic therapy sensitization chemotherapy.


Assuntos
Glioblastoma , Glicólise , Nanocápsulas , Temozolomida , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Temozolomida/farmacologia , Temozolomida/química , Nanocápsulas/química , Camundongos , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Camundongos Nus , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , RNA Interferente Pequeno/metabolismo , Barreira Hematoencefálica/metabolismo , Glutationa/metabolismo , Glutationa/química
9.
J Hazard Mater ; 470: 134274, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608587

RESUMO

The sluggish kinetics of Fe2+ regeneration seriously hinders the performance of Fenton process. However, the conventional Fenton system excessively stifle hydrogen-producing reactions, ignoring the significance of active hydrogen (H*) in Fe3+ reduction. Herein, a strategy of H* modulation is developed by decorating molybdenum disulfide (MoS2) on a graphite felt (GF) cathode to boost Fe2+ regeneration in solar-driven electro-Fenton (SEF) process. With MoS2 regulation, moderately dispersed MoS2 on GF can serve as a bifunctional cathode, where the H* and hydrogen peroxide (H2O2) are simultaneously generated through H+ reduction and O2 reduction, respectively. The in-situ generated H2O2 can trigger Fenton reactions with Fe2+, while the H* with robust reducing potential can significantly expedite Fe3+ reduction, consequently enhancing the HO• production. Both DFT calculations and EPR experiments confirm that H* can be activated via MoS2 decoration. The results show that Fe2+ concentration in the MoS2 @GF-SEF system remains at 15.74 mg/L (56.21%) after 6 h, which is 17.89 times that of the GF-SEF system. Moreover, the HO• content and organics degradation rate in the MoS2 @GF-SEF are 3.61 and 5.30 times those of the GF-SEF, respectively. This study provides a practical cathode strategy of H* modulation to enhance HO• production and electro-Fenton process. ENVIRONMENTAL IMPLICATION: Boosting Fe2+ regeneration is of great value for the Electro-Fenton process. Herein, report a strategy to achieve this goal based on a MoS2 @GF cathode. Remarkably, the MoS2 @GF system exhibits exceptional efficiency for both various refractory organic compounds with environmentally hazardous effects and sterilization aspects, which can also work over a wide range of pH values (3-11). Specially, this system is driven only by solar energy. These characteristics make the electro-Fenton system more suitable for practical wastewater treatment.

10.
Cell Discov ; 10(1): 43, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622126

RESUMO

Macroautophagy is a process that cells engulf cytosolic materials by autophagosomes and deliver them to lysosomes for degradation. The biogenesis of autophagosomes requires ATG2 as a lipid transfer protein to transport lipids from existing membranes to phagophores. It is generally believed that endoplasmic reticulum is the main source for lipid supply of the forming autophagosomes; whether ATG2 can transfer lipids from other organelles to phagophores remains elusive. In this study, we identified a new ATG2A-binding protein, ANKFY1. Depletion of this endosome-localized protein led to the impaired autophagosome growth and the reduced autophagy flux, which largely phenocopied ATG2A/B depletion. A pool of ANKFY1 co-localized with ATG2A between endosomes and phagophores and depletion of UVRAG, ANKFY1 or ATG2A/B led to reduction of PI3P distribution on phagophores. Purified recombinant ANKFY1 bound to PI3P on membrane through its FYVE domain and enhanced ATG2A-mediated lipid transfer between PI3P-containing liposomes. Therefore, we propose that ANKFY1 recruits ATG2A to PI3P-enriched endosomes and promotes ATG2A-mediated lipid transfer from endosomes to phagophores. This finding implicates a new lipid source for ATG2A-mediated phagophore expansion, where endosomes donate PI3P and other lipids to phagophores via lipid transfer.

11.
J Mater Chem B ; 12(17): 4184-4196, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592788

RESUMO

Stent implantation is one of the most effective methods for the treatment of atherosclerosis. Nitinol stent is a type of stent with good biocompatibility and relatively mature development; however, it cannot effectively achieve long-term anticoagulation and early endothelialization. In this study, nitinol surfaces with the programmed assembly of heparin, exosomes from endothelial cells, and endothelial affinity peptide (REDV) were fabricated through layer-by-layer assembly technology and click-chemistry, and then exosomes/REDV-modified nitinol interface (ACC-Exo-REDV) was prepared. ACC-Exo-REDV could promote the rapid proliferation and adhesion of endothelial cells and achieve anticoagulant function in the blood. Besides, ACC-Exo-REDV had excellent anti-inflammatory properties and played a positive role in the transformation of macrophage from the pro-inflammatory to anti-inflammatory phenotype. Ex vivo and in vivo experiments demonstrated the effectiveness of ACC-Exo-REDV in preventing thrombosis and hyperplasia formation. Hence, the programmed assembly of exosome interface could contribute to endothelialization and have potential application on the cardiovascular surface modification to prevent stent thrombosis and restenosis.


Assuntos
Ligas , Exossomos , Células Endoteliais da Veia Umbilical Humana , Stents , Ligas/química , Exossomos/metabolismo , Exossomos/química , Humanos , Animais , Peptídeos/química , Peptídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Propriedades de Superfície , Adesão Celular/efeitos dos fármacos , Células RAW 264.7 , Células Endoteliais/efeitos dos fármacos
12.
ACS Appl Mater Interfaces ; 16(10): 12599-12611, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437708

RESUMO

The rapid decline of the reversible capacity originating from microcracks and surface structural degradation during cycling is still a serious obstacle to the practical utilization of Ni-rich LiNixCoyAl1-x-yO2 (x ≥ 0.8) cathode materials. In this research, a feasible Hf-doping method is proposed to improve the electrochemical performance of LiNi0.9Co0.08Al0.02O2 (NCA90) through microstructural optimization and structural enhancement. The addition of Hf refines the primary particles of NCA90 and develops them into a short rod shape, making them densely arranged along the radial direction, which increases the secondary particle toughness and reduces their internal porosity. Moreover, Hf-doping stabilizes the layered structure and suppresses the side reactions through the introduction of robust Hf-O bonding. Multiple advantages of Hf-doping allowed significant improvement of the cycling stability of LiNi0.895Co0.08Al0.02Hf0.005O2 (NCA90-Hf0.5), with a reversible capacity retention rate of 95.3% after 100 cycles at 1 C, as compared with only 82.0% for the pristine NCA90. The proposed synergetic strategy combining microstructural engineering and crystal structure enhancement can effectively resolve the inherent capacity fading of Ni-rich layered cathodes, promoting their practical application for next-generation lithium-ion batteries.

13.
Inorg Chem ; 63(12): 5727-5733, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470094

RESUMO

Nickel-rich layered oxides are envisaged as one of the most promising alternative cathode materials for lithium-ion batteries, considering their capabilities to achieve ultrahigh energy density at an affordable cost. Nonetheless, with increasing Ni content in the cathodes comes a severe extent of Ni4+ redox side reactions on the interface, leading to fast capacity decay and structural stability fading over extended cycles. Herein, dual additives of bis(vinylsulfonyl)methane (BVM) and lithium difluorophosphate (LiDFP) are adopted to synergistically generate the F-, P-, and S-rich passivation layer on the cathode, and the Ni4+ activity and dissolution at high voltage are restricted. The sulfur-rich layer formed by the polymerization of BVM, combined with the Li3PO4 and LiF phases derived from LiDFP, alleviates the problems of increased impedance, cracks, and an irreversible H2-H3 phase transition. Consequently, the Ni-rich LiNixM1-xO2 (x > 0.95) button half-cell cycled in LiDFP + BVM electrolyte exhibits a significant discharging capacity of 181.4 mAh g-1 at 1 C (1 C = 200 mA g-1) with retention of 83.7% after 100 cycles, surpassing the performance of the commercial electrolyte (160.7 mAh g-1) with retention of 53.3%. Remarkably, the NCM95||graphite pouch cell exhibits a remarkable capacity retention of 95.5% after 200 cycles. This work inspires the rational design of electrolyte additives for ultrahigh-energy batteries with nickel-rich layered oxide cathodes.

14.
Angew Chem Int Ed Engl ; 63(15): e202400483, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38321496

RESUMO

Electrocatalytic alkyne semihydrogenation under mild conditions is a more attractive approach for alkene production than industrial routes but suffers from either low production efficiency or high energy consumption. Here, we describe a tandem catalytic concept that overcomes these challenges. Component (i), which can trap hydrogen effectively, is partnered with component (ii), which can readily release hydrogen for hydrogenation, to enable efficient generation of active hydrogen on component (i) at low overpotentials and timely (i)-to-(ii) hydrogen spillover and facile desorptive hydrogenation on component (ii). We examine this concept over bicomponent palladium-copper catalysts for the production of representative 2-methyl-3-butene-2-ol (MBE) from 2-methyl-3-butyne-2-ol (MBY) and achieve a record high MBE production rate of 1.44 mmol h-1 cm-2 and a Faraday efficiency of ~88.8 % at a low energy consumption of 1.26 kWh kgMBE -1. With these catalysts, we further achieve 60 h continuous production of MBE with record high profit space.

15.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227973

RESUMO

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

16.
Biosens Bioelectron ; 249: 116010, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215638

RESUMO

Mass probes attached with aptamers and mass tags offer excellent specificity and sensitivity for multiplexed detection, wherein the dissociation of mass tags from the mass probes is as important as their labeling. Herein, aggregation-induced emission luminogen (AIEgen)-tagged mass probes (AIEMPs) were established to analyze estrogens, which integrated aptasensor with an explosive mass-tag signal amplification strategy via a simple ultrasound-assisted emulsification of nanoliposomes. The AIEMPs were assembled by the hybridization of aptamer-modified Fe3O4 nanoparticles (Fe NPs@Apt) and nanoliposomes loaded with massive AIEgen mass tags and partially complementary DNA strands (AIE NLs@cDNA). The aptamer was preferentially and specifically bound to estrogen, resulting in the detachment of AIE NLs from AIEMPs. Subsequently, the AIEMPs were deposited with electrospray solvents for explosive release of mass tags. Using nanoelectrospray ionization mass spectrometry (nanoESI-MS), the AIEMP-based aptasensor achieved ultrasensitive analysis of estrogens with limits of detection of 0.168-0.543 pg/mL and accuracies in the range of 87.9-114.0%. Compared to direct nanoESI-MS detection, the AIEMP-based aptasensor provides a signal amplification of four orders of magnitude. Furthermore, the utilization of different AIEMPs enables multiplexed detection of three estrogens with a miniature mass spectrometer, showing promising potential for on-site detection. This work expands the diversity of mass-tagging strategy and provides a versatile mass probe-based aptasensor platform for routine MS detection of trace analytes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , DNA Complementar/química , Hibridização de Ácido Nucleico , Aptâmeros de Nucleotídeos/química , Estrogênios , Limite de Detecção , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas
17.
J Pharm Sci ; 113(2): 463-470, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852536

RESUMO

Photodynamic therapy (PDT) is a potential treatment strategy for melanoma. As a second-generation photosensitizer, Zinc phthalocyanine (ZnPc) has many advantages for anti-tumor PDTs, such as strong absorption in the red and near infrared regions, high photo and chemical stability, etc. However, ZnPc has a poor water solubility and is apt to aggregate due to the π-π interaction between molecules, which limits its applications. In this study, various solvents and surfactants were screened for dissolving ZnPc and preparing ZnPc@SDC-TPGS micelle and thermosensitive in situ gel. After the cytotoxic effects of thermosensitive gels on PDT were tested, the antitumor effects on PDT of them in mice by intratumoral injection were evaluated, including body weight, and tumor weight, volume and morphology. The cell death pathway and the relationship of reactive oxygen species yield with apoptotic rate of tumor cells induced by ZnPc in situ gel were investigated. The results were that N-methyl-pyrrolidone (NMP) mixed with 2 % SDC and aqueous solution containing 2 % TPGS and 2 % SDC were used to synthesize ZnPc@SDC-TPGS micelle and the thermosensitive in situ gel. The cytotoxic effects of thermosensitive gels showed good tumor suppression of ZnPc@SDC-TPGS in situ gel and no toxicity of the blank gel. Intratumoral injection in situ gel containing 3 µg ZnPc under irradiation demonstrated good tumor inhibition in mice with melanoma. Apoptosis has been established as the primary pathway of cell death, and the production of reactive oxygen species (ROS) plays a crucial role in cellular apoptosis induced by ZnPc@SDC-TPGS in situ gel. In conclusion, the intratumoral injection of ZnPc@SDC-TPGS thermosensitive in situ gel provides a promising local treatment option for melanoma.


Assuntos
Antineoplásicos , Isoindóis , Melanoma , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Animais , Melanoma/tratamento farmacológico , Micelas , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Injeções Intralesionais , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Géis
18.
Autophagy ; 20(3): 714-715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38083843

RESUMO

Macroautophagy/autophagy is a highly conserved process that involves the degradation of proteins, damaged organelles, and other cytoplasmic macromolecules. Autophagosome-lysosome fusion is critical for successful substrate degradation and is mediated by SNARE proteins. The fusion process requires additional vesicle docking and tethering-regulating factors. Our recent work has uncovered a functional model of autophagosome-lysosome fusion. We demonstrated that the six-subunit homotypic fusion and vacuole protein sorting (HOPS) complex can be assembled by two subcomplexes, the VPS39-VPS11 subcomplex (HOPS-2) and the VPS41-VPS16-VPS18-VPS33A subcomplex (HOPS-4). VPS39 binds with RAB2 on the autophagosome and VPS41 binds with RAB39A on the lysosome, which then promotes membrane tethering and autophagic SNARE-mediated membrane fusion. Moreover, we have revealed that ALS- and FTD-related C9orf72 is a guanine exchange factor (GEF) for RAB39A. In this punctum, we discuss how the C9orf72-RAB39A-HOPS axis function regulates autophagosome-lysosome fusion.


Assuntos
Autofagia , Macroautofagia , Proteína C9orf72/metabolismo , Autofagossomos/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Lisossomos/metabolismo
19.
Cell Discov ; 9(1): 115, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989733

RESUMO

Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)-SNAP23-SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18-SNAP23-SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18-SNAP23-SEC22B in LD fusion.

20.
Diabetes Metab Syndr Obes ; 16: 3631-3639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028986

RESUMO

Introduction: Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes. DKD is associated with oxidative stress and inflammation. Versican (VCAN), a chondroitin sulphate proteoglycan, has been proven to participate in oxidative stress and inflammation. This study aimed to explore the overall and sex-based relationship between serum VCAN levels and albuminuria in patients with type 2 diabetes mellitus (T2DM). Methods: 428 patients with T2DM and 84 healthy individuals were enrolled. Patients with diabetes were separated into normal albuminuria, microalbuminuria, and macroalbuminuria groups, according to their urinary albumin/creatinine ratio (UACR). Serum VCAN levels were tested using an enzyme-linked immunosorbent assay. Results: Compared with males, female patients were older, and had higher total cholesterol and high-density lipoprotein cholesterol, but lower body mass index, diastolic blood pressure, glycated hemoglobin A1, alanine aminotransferase, urinary albumin (UA), and serum creatinine (SCr) (P < 0.05). The VCAN levels in male patients with T2DM were significantly higher than those in the healthy individuals. Male patients with T2DM with albuminuria (micro and macro) had higher levels of VCAN than in patients with normal albuminuria; the highest level was seen in patients with macroalbuminuria (P < 0.05). In male patients with T2DM, serum VCAN correlated positively with systolic blood pressure, blood urea nitrogen, UA, SCr, and UACR, but correlated negatively with the estimated glomerular filtration rate. The area under the receiver operating characteristic curve of serum VCAN to diagnose albuminuria was 0.702, with a corresponding cut-off value of 0.399 ng/mL (P < 0.001). However, the association between serum VCAN and UACR was not observed in female patients with T2DM. Conclusion: Serum VCAN levels correlated positively with the severity of albuminuria in male patients with T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA