Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetica ; 151(1): 47-59, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436173

RESUMO

Identifying cold-related genes can provide insights into the cold adaptation mechanism of weeping forsythia. In this study, we compared the changes in gene expressions and physiological and biochemical indices under short-term cold stimulation with the changes in gene sequences under a long-term heterogeneous environment to investigate the cold adaptation mechanism in weeping forsythia. The data of adaptive gene sequence changes, e.g., single nucleotide polymorphisms, were obtained from previous landscape genomics studies. The physiological and biochemical indicators and transcriptome results showed that weeping forsythia initiated a series of programs, including increasing cell osmotic pressures, scavenging ROS, activating the defense mechanism that crosses with pathogen infection, and upregulating CBF/DREB1 transcription factor 1, to cope with short-term cold stress. A reanalysis of landscape genomic data suggested that weeping forsythia responded to long-term heterogeneous cold stress by the differentiation of genes related to synthesis of aromatic substances and adenosine triphosphate. Our results supported the hypothesis that the adaptation mechanisms of species to short-term environmental stimulation and long-term stress in heterogeneous environments are different. The differences in cold tolerance among populations are not necessarily obtained by changing cold-responsive gene sequences. This study provides new insights into the cold adaptation mechanisms of plants.


Assuntos
Forsythia , Forsythia/genética , Transcriptoma , Plantas/genética , Regulação da Expressão Gênica de Plantas , Adaptação Fisiológica/genética
2.
Genomics ; 113(4): 2583-2590, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34111522

RESUMO

Pterocarya stenoptera is a tree species that occurs along rivers and has high tolerance to waterlogging. Identification of waterlogging response genes in the aboveground part of P. stenoptera will increase understanding of tolerance mechanisms under root waterlogging conditions. In this study, we employed four physiological indicators and comparative transcriptome sequencing to investigate the waterlogging tolerance mechanism in P. stenoptera. The physiological results showed that the aboveground part of P. stenoptera was not obviously affected by waterlogging. P. stenoptera enhanced waterlogging tolerance by increasing the synthesis of alpha-Linolenic acids and flavonoids and activating the jasmonic acid, ethylene, and auxin signaling pathways. Our results confirmed our hypothesis that P. stenoptera, a species that is widely distributed along rivers, has evolved a range of mechanisms in response to waterlogging. Our research will provide new insights for understanding the tolerance mechanism of species to waterlogging.


Assuntos
Rios , Estresse Fisiológico , Estresse Fisiológico/genética
3.
Mol Phylogenet Evol ; 158: 107083, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516804

RESUMO

As a consequence of hybridization, polyploidization, and apomixis, the genus Cotoneaster (Rosaceae) represents one of the most complicated and controversial lineages in Rosaceae, with ca. 370 species which have been classified into two subgenera and several sections, and is notorious for its taxonomic difficulty. The infrageneric relationships and taxonomy of Cotoneaster have remained poorly understood. Previous studies have focused mainly on natural hybridization involving only several species, and phylogeny based on very limited markers. In the present study, the sequences of complete chloroplast genomes and 204 low-copy nuclear genes of 72 accessions, representing 69 species as ingroups, were used to conduct the most comprehensive phylogenetic analysis so far for Cotoneaster. Based on the sequences of complete chloroplast genomes and many nuclear genes, our analyses yield two robust phylogenetic trees respectively. Chloroplast genome and nuclear data confidently resolved relationships of this genus into two major clades which largely supported current classification based on morphological evidence. However, conflicts between the chloroplast genome and low-copy nuclear phylogenies were observed in both the species level and clade level. Cyto-nuclear discordance in the phylogeny could be caused by frequent hybridization events and incomplete sorting lineage (ILS). In addition, our divergence-time analysis revealed an evolutionary radiation of the genus from late Miocene to date.


Assuntos
Genoma de Cloroplastos , Rosaceae/genética , Evolução Biológica , Núcleo Celular/genética , DNA de Plantas/química , DNA de Plantas/metabolismo , Filogenia , Rosaceae/anatomia & histologia , Rosaceae/classificação , Análise de Sequência de DNA
4.
Front Genet ; 10: 1089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737056

RESUMO

The geological events, past climatic fluctuations, and river systems played key roles in the spatial distribution, population dynamics, and genetic differentiation of species. In this work, we selected Pterocarya stenoptera, a widespread tree species in China, to test the roles of these factors. Four noncoding spacers, eight microsatellite (simple sequence repeat) markers, and species distribution modeling were used to examine the phylogeographical pattern of P. stenoptera. Based on chloroplast DNA data, populations of P. stenoptera were clearly clustered into three groups. The divergence time of these groups fell into the stage of the Qinghai-Tibet Movement, 1.7-2.6 Ma. For simple sequence repeat data, only one western marginal population YNYB could be separated from other populations, whereas other populations were mixed together. Our results indicated that the environmental heterogeneity resulting from the Qinghai-Tibet movement might be response for this genetic divergence. The climatic fluctuations in the Pleistocene did not cause the substantial range shift of P. stenoptera, while the fluctuations affected its population size. Moreover, we also confirmed the river systems did not act as channels or barrier of dispersal for P. stenoptera.

5.
PLoS One ; 10(10): e0139373, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427005

RESUMO

Many Firmiana species are locally endemic, providing an interesting system for studying adaptation and speciation. Among these species, F. danxiaensis is a tree species endemic to Mount Danxia in Guangdong, China, which is an area known for presenting the Danxia landform. How F. danxiaensis could have adapted to the stressful environment of rocky cliffs covered with barren soils in the Danxia landform is still unknown. In this study, we performed de novo assembly of the transcriptome of F. danxiaensis, obtaining 47,221 unigenes with an N50 value of 987 bp. Homology analysis showed that 32,318 of the unigenes presented hits in the NCBI non-redundant database, and 31,857 exhibited significant matches with the protein database of Theobroma cacao. Gene Ontology (GO) annotation showed that hundreds of unigenes participated in responses to various stresses or nutritional starvation, which may help us to understand the adaptation of F. danxiaensis to Danxia landform. Additionally, we found 263 genes related to responses to Cd, partially explaining the high accumulation of Cd observed in Firmiana species. The EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations revealed many genes playing roles in the biosynthesis of secondary metabolites and environmental adaptation, which may also contribute to the survivor and success of Firmiana species in extreme environments. Based on the obtained transcriptome, we further identified a Firmiana-specific whole-genome duplication event that occurred approximately 20 Mya, which may have provided raw materials for the diversification of Firmiana species.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Análise de Sequência de DNA/métodos , Árvores/genética , Adaptação Fisiológica , China , Biologia Computacional , Bases de Dados Genéticas , Ontologia Genética , Genoma de Planta , Filogenia , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA