Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Cardiothorac Surg ; 19(1): 509, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223627

RESUMO

BACKGROUND: Streptococcus pneumoniae (Spn) is a major causative agent of pneumonia, which can disseminate to the bloodstream and brain. Pneumonia remains a leading cause of death among children aged 1-59 months worldwide. This study aims to investigate the role of Kruppel-like factor 2 (KLF2) in lung injury caused by Spn in young mice. METHODS: Young mice were infected with Spn to induce pneumonia, and the bacterial load in the bronchoalveolar lavage fluid was quantified. KLF2 expression in lung tissues was analyzed using real-time quantitative polymerase chain reaction and Western blotting assays. Following KLF2 overexpression, lung tissues were assessed for lung wet-to-dry weight ratio and Myeloperoxidase activity. The effects of KLF2 on lung injury and inflammation were evaluated through hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Chromatin immunoprecipitation and dual-luciferase assay were conducted to examine the binding of KLF2 to the promoter of microRNA (miR)-222-3p and cyclin-dependent kinase inhibitor 1B (CDKN1B), as well as the binding of miR-222-3p to CDKN1B. Levels of miR-222-3p and CDKN1B in lung tissues were also determined. RESULTS: In young mice with pneumonia, KLF2 and CDKN1B were downregulated, while miR-222-3p was upregulated in lung tissues. Overexpression of KLF2 reduced lung injury and inflammation, evidenced by decreased bacterial load, reduced lung injury, and lower levels of proinflammatory factors. Co-transfection of miR-222-3p-WT and oe-KLF2 significantly reduced luciferase activity, suggesting that KLF2 binds to the promoter of miR-222-3p and suppresses its expression. Transfection of CDKN1B-WT with miR-222-3p mimics significantly reduced luciferase activity, indicating that miR-222-3p binds to CDKN1B and downregulates its expression. Overexpression of miR-222-3p or downregulation of CDKN1B increased bacterial load in BALF, lung wet/dry weight ratio, MPO activity, and inflammation, thereby reversing the protective effect of KLF2 overexpression on lung injury in young mice with pneumonia. CONCLUSIONS: KLF2 alleviates lung injury in young mice with Spn-induced pneumonia by transcriptional regulation of the miR-222-3p/CDKN1B axis.


Assuntos
Modelos Animais de Doenças , Fatores de Transcrição Kruppel-Like , Pneumonia Pneumocócica , Streptococcus pneumoniae , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/biossíntese , Camundongos Endogâmicos C57BL , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Masculino
2.
J Headache Pain ; 25(1): 148, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261750

RESUMO

BACKGROUND: Migraine is a highly prevalent and complex neurovascular disease. However, the currently available therapeutic drugs often fall to adequately meet clinical needs due to limited effectiveness and numerous undesirable side effects. This study aims to identify putative novel targets for migraine treatment through proteome-wide Mendelian randomization (MR). METHODS: We utilized MR to estimate the causal effects of plasma proteins on migraine and its two subtypes, migraine with aura (MA) and without aura (MO). This analysis integrated plasma protein quantitative trait loci (pQTL) data with genome-wide association studies (GWAS) findings for these migraine phenotypes. Moreover, we conducted a phenome-wide MR assessment, enrichment analysis, protein-protein interaction networks construction, and mediation MR analysis to further validate the pharmaceutical potential of the identified protein targets. RESULTS: We identified 35 protein targets for migraine and its subtypes (p < 8.04 × 10-6), with prioritized targets showing minimal side effects. Phenome-wide MR identified novel protein targets-FCAR, UBE2L6, LATS1, PDCD1LG2, and MMP3-that have no major disease side effects and interacted with current acute migraine medication targets. Additionally, MMP3, PDCD1LG2, and HBQ1 interacted with current preventive migraine medication targets. The causal effects of plasma protein on migraine were partly mediated by plasma metabolites (proportion of mediation from 3.8% to 21.0%). CONCLUSIONS: A set of potential protein targets for migraine and its subtypes were identified. These proteins showed rare side effects and were responsible for biological mechanisms involved in migraine pathogenesis, indicating priority for the development of migraine treatments.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteoma , Locos de Características Quantitativas , Humanos , Proteoma/efeitos dos fármacos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/sangue , Mapas de Interação de Proteínas/genética , Enxaqueca com Aura/genética , Enxaqueca com Aura/tratamento farmacológico , Enxaqueca com Aura/sangue , Enxaqueca sem Aura/genética , Enxaqueca sem Aura/tratamento farmacológico , Enxaqueca sem Aura/sangue , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
3.
Ocul Surf ; 34: 247-261, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111696

RESUMO

Fuchs endothelial corneal dystrophy (FECD) stands as the most prevalent primary corneal endothelial dystrophy worldwide, posing a significant risk to corneal homeostasis and clarity. Corneal endothelial cells exhibit susceptibility to oxidative stress, suggesting a nuanced relationship between oxidant-antioxidant imbalance and FECD pathogenesis, irrespective of FECD genotype. Given the constrained availability of corneal transplants, exploration into non-surgical interventions becomes crucial. This encompasses traditional antioxidants, small molecule compounds, biologics, and diverse non-drug therapies, such as gene-related therapy, hydrogen therapy and near infrared light therapy. This review concentrates on elucidating the mechanisms behind oxidant-antioxidant imbalance and the evolution of strategies to restore oxidant-antioxidant balance in FECD. It provides a comprehensive overview of both conventional and emerging therapeutic approaches, offering valuable insights for the advancement of non-surgical treatment modalities. The findings herein might establish a robust foundation for future research and the therapeutic strategy of FECD.

4.
Plant Physiol Biochem ; 215: 109024, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133981

RESUMO

Nitric oxide (NO) and S-nitrosothiol (SNO) are signal molecules and the products of nitrogen metabolism. Nitrate (NO3-) is the main nitrogen source, and nitrate transporters (NRTs) are responsible for NO3- absorption or transport. However, the interactive effect between NO3-/NRT and NO/SNO in tree plants remains ambiguous. In the present study, 25 mmol L-1 NO3- and 1 mmol L-1 NO donor sodium nitroprusside (SNP) treatment that was conducted for 24 h enhanced NO/SNO and NO3- metabolism, whereas 2.5 mmol L-1 NO3- and 80 µmol L-1 N6022 (a compound that increases SNO content) treatment reduced them in seedling leaves of Fraxinus mandshurica and Betula platyphylla. Among the nine NRT family members examined, the gene expression level of NRT2.1 had a greater response to NO/SNO and NO3- treatment in the seedling leaves of F. mandshurica and B. platyphylla. Meanwhile, FmNRT2.1 mediated NO and SNO production in seedling leaves of F. mandshurica using Agrobacterium-mediated transient transformation. These findings shed light on the reciprocal regulation between NO3- and NO/SNO in seedlings of F. mandshurica and B. platyphylla, and NRT2.1 may act as a key regulatory hub.


Assuntos
Betula , Fraxinus , Nitratos , Óxido Nítrico , Folhas de Planta , Plântula , Folhas de Planta/metabolismo , Folhas de Planta/genética , Nitratos/metabolismo , Fraxinus/metabolismo , Fraxinus/genética , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Betula/metabolismo , Betula/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Transportadores de Nitrato
5.
J Integr Plant Biol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136630

RESUMO

Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.

6.
J Pharm Biomed Anal ; 249: 116391, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116504

RESUMO

Sinomenii Caulis (SC), a commonly used traditional Chinese medicine for its therapeutic effects on rheumatoid arthritis, contains rich chemical components. At present, most studies mainly focus on sinomenine, with little research on other alkaloids. In this study, a comprehensive profile of compounds in SC extract, and biological samples of rats (including bile, urine, feces, and plasma) after oral administration of SC extract was conducted via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The fragmentation patterns and potential biotransformation pathways of six main types of alkaloids in SC were summarized, and the corresponding characteristic product ions, relative ion intensity, and neutral losses were obtained to achieve rapid classification and identification of complex components of SC from in vitro to in vivo. As a result, a total of 114 alkaloid compounds were identified, including 12 benzyl alkaloids, 4 isoquinolone alkaloids, 32 aporphine alkaloids, 28 protoberberine alkaloids, 34 morphinan alkaloids and 4 organic amine alkaloids. After administration of SC extract to rats, a total of 324 prototypes and metabolites were identified from rat plasma, urine, feces and bile, including 81 aporphines, 95 protoberberines, 117 morphinans and 31 benzylisoquinolines. The main types of metabolites were demethylation, hydrogenation, dehydrogenation, aldehydation, oxidation, methylation, sulfate esterification, glucuronidation, glucose conjugation, glycine conjugation, acetylation, and dihydroxylation. In summary, this integrated strategy provides an additional approach for the incomplete identification caused by compound diversity and low abundance, laying the foundation for the discovery of new bioactive compounds of SC against rheumatoid arthritis.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Alcaloides/análise , Alcaloides/química , Alcaloides/farmacocinética , Sinomenium/química , Fezes/química , Administração Oral , Bile/química , Bile/metabolismo , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Espectrometria de Massas/métodos , Medicina Tradicional Chinesa/métodos , Morfinanos/farmacocinética , Morfinanos/metabolismo
7.
J Headache Pain ; 25(1): 110, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977951

RESUMO

BACKGROUND: New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS: This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS: Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS: Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.


Assuntos
Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Transtornos da Cefaleia/diagnóstico por imagem , Transtornos da Cefaleia/patologia , Neuritos/patologia
8.
Innovation (Camb) ; 5(4): 100657, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39071942

RESUMO

Many plans to establish human settlements on other planets focus on adapting crops to growth in controlled environments. However, these settlements will also require pioneer plants that can grow in the soils and harsh conditions found in extraterrestrial environments, such as those on Mars. Here, we report the extraordinary environmental resilience of Syntrichia caninervis, a desert moss that thrives in various extreme environments. S. caninervis has remarkable desiccation tolerance; even after losing >98% of its cellular water content, it can recover photosynthetic and physiological activities within seconds after rehydration. Intact plants can tolerate ultra-low temperatures and regenerate even after being stored in a freezer at -80°C for 5 years or in liquid nitrogen for 1 month. S. caninervis also has super-resistance to gamma irradiation and can survive and maintain vitality in simulated Mars conditions; i.e., when simultaneously exposed to an anoxic atmosphere, extreme desiccation, low temperatures, and intense UV radiation. Our study shows that S. caninervis is among the most stress tolerant organisms. This work provides fundamental insights into the multi-stress tolerance of the desert moss S. caninervis, a promising candidate pioneer plant for colonizing extraterrestrial environments, laying the foundation for building biologically sustainable human habitats beyond Earth.

9.
J Inorg Biochem ; 257: 112612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761579

RESUMO

Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non­platinum anticancer drugs.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Imidazóis , Irídio , Fenantrolinas , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/química , Fenantrolinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Células A549 , Espécies Reativas de Oxigênio/metabolismo , Fenantrenos/química , Fenantrenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos
10.
Plant Physiol Biochem ; 211: 108620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714124

RESUMO

Desiccation is a state of extreme water loss that is lethal to many plant species. Some desert plants have evolved unique strategies to cope with desiccation stress in their natural environment. Here we present the remarkable stress management mechanism of Syntrichia caninervis, a desert moss species which exhibits an 'A' category of desiccation tolerance. Our research demonstrated that desiccation stress triggers autophagy in S. caninervis while inhibiting Programmed Cell Death (PCD). Silencing of two autophagy-related genes, ATG6 and ATG2, in S. caninervis promoted PCD. Desiccation treatment accelerated cell death in ATG6 and ATG2 gene-silenced S. caninervis. Notably, trehalose was not detected during desiccation, and exogenous application of trehalose cannot activate autophagy. These results suggested that S. caninervis is independent of trehalose accumulation to triggered autophagy. Our results showed that autophagy function as prosurvival mechanism to enhance desiccation tolerance of S. caninervis. Our findings enrich the knowledge of the role of autophagy in plant stress response and may provide new insight into understanding of plant desiccation tolerance.


Assuntos
Autofagia , Dessecação , Trealose , Trealose/metabolismo , Apoptose , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
11.
Front Med (Lausanne) ; 11: 1359878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681056

RESUMO

Background: There is still a controversy about the superiority of liposomal bupivacaine (LB) over traditional local anesthetics in postoperative analgesia after thoracic surgery. This study aims to determine the effect of LB versus bupivacaine hydrochloride (HCl) for preoperative ultrasound-guided erector spinae plane block (ESPB) on postoperative acute and chronic pain in patients undergoing video-assisted thoracoscopic lung surgery. Methods: This multicenter, randomized, double-blind, controlled trial will include 272 adult patients scheduled for elective video-assisted thoracoscopic lung surgery. Patients will be randomly assigned, 1:1 and stratified by site, to the liposomal bupivacaine (LB) group or the bupivacaine (BUPI) HCl group. All patients will receive ultrasound-guided ESPB with either LB or bupivacaine HCl before surgery and patient-controlled intravenous analgesia (PCIA) as rescue analgesia after surgery. The numeric rating scale (NRS) score will be assessed after surgery. The primary outcome is the area under the curve of pain scores at rest for 0-72 h postoperatively. The secondary outcomes include the total amount of opioid rescue analgesics through 0-72 h postoperatively, time to the first press on the PCIA device as rescue analgesia, the area under the curve of pain scores on activity for 0-72 h postoperatively, NRS scores at rest and on activity at different time points during the 0-72 h postoperative period, Quality of Recovery 15 scores at 72 h after surgery, and NRS scores on activity on postsurgical day 14 and postsurgical 3 months. Adverse events after the surgery are followed up to the postsurgical day 7, including postoperative nausea and vomiting, fever, constipation, dizziness, headache, insomnia, itching, prolonged chest tube leakage, new-onset atrial fibrillation, severe ventricular arrhythmia, deep venous thrombosis, pulmonary embolism, pulmonary atelectasis, cardiac arrest, ileus, urinary retention, chylothorax, pneumothorax, and organ failure. Analyzes will be performed first according to the intention to treat principle and second with the per-protocol analysis. Discussion: We hypothesize that LB for preoperative ultrasound-guided ESPB would be more effective than bupivacaine HCl in reducing postoperative pain in video-assisted thoracoscopic lung surgery. Our results will contribute to the optimization of postoperative analgesia regimens for patients undergoing video-assisted thoracoscopic lung surgery.Clinical trial registration:http://www.chictr.org.cn, identifier ChiCTR2300074852.

12.
Int J Biol Macromol ; 266(Pt 2): 131151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547945

RESUMO

BACKGROUND: Cold as a common environmental stress, causes increased heat production, accelerated metabolism and even affects its production performance. How to improve the adaptability of the animal organism to cold has been an urgent problem. As a key hub of lipid metabolism, the liver can regulate lipid metabolism to maintain energy balance, and O-GlcNAcylation is a kind of important PTMs, which participates in a variety of signaling and mechanism regulation, and at the same time, is very sensitive to changes in stress and nutritional levels, and is the body's "stress receptors" and "nutrient receptors". Therefore, the aim of this experiment was to investigate the effect of cold-induced O-GlcNAcylation on hepatic lipid metabolism, and to explore the potential connection between O-GlcNAcylation and hepatic lipid metabolism. METHODS: To investigate the loss of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the precise impacts of additional cold-induced circumstances on liver mass, shape, and metabolic profile, C57 mice were used as an animal model. Using the protein interactions approach, the mechanism of O-GlcNAcylation, as well as the degradation pathway of acyl-Coenzyme A oxidase 1 (ACOX1), were clarified. Additional in vitro analyses of oleic acid (OA) and OGT inhibitor tetraoxan (Alloxan) (Sigma, 2244-11-3) on lipid breakdown in AML-12 cells. RESULTS: In C57BL/6 mice, deletion of O-GlcNAcylation disrupted lipid metabolism, caused hepatic edema and fibrosis, and altered mitochondrial apoptosis. This group of modifications was made worse by cold induction. The accumulation of medium- and long-chain fatty acids is a hallmark of lipolysis, which is accelerated by the deletion of O-GlcNAcylation, whereas lipid synthesis is slowed down. The association between ACOX1 and OGT at the K48 gene precludes ubiquitinated degradation.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Ubiquitinação , Animais , Masculino , Camundongos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Proteólise , Acil-CoA Oxidase/antagonistas & inibidores , Acil-CoA Oxidase/metabolismo , Acetilglucosamina/metabolismo
13.
Genes (Basel) ; 15(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397220

RESUMO

Apocynum venetum L. is an economically valuable plant with tolerance to drought and salinity. Its leaves are utilized in tea production and pharmaceuticals, while the stem bark serves as a high-quality fiber material. To gain insights into the gene expression patterns of A. venetum using quantitative real-time PCR (qRT-PCR), it is crucial to identify appropriate reference genes. This study selected nine candidate genes, including α-tubulin (TUA), ß-tubulin (TUB), actin (ACT), cyclophilin (CYP), elongation factor-1α (EF-1α), the B family of regulatory subunits of protein phosphatase (PPP2R2, PPP2R3, and PPP2R5), and phosphoglycerate kinase (PGK), to determine the most appropriate reference genes in the leaf, stem, and root tissues of A. venetum. A comprehensive ranking by geNorm, NormFinder, BestKeeper, and RefFinder software and Venn diagrams was used to screen more stable reference genes in different tissues. The two most stable reference genes were CYP and TUA in leaves, PGK and PPP2R3 in stems, and TUA and EF-1α in roots, respectively. The relative expression values of the four genes involved in proline metabolism under polyethylene glycol treatment were used to validate the screened reference genes, and they exhibited highly stable expression levels. These findings represent the first set of stable reference genes for future gene expression studies in A. venetum. They significantly contribute to enhancing the accuracy and reliability of gene expression analyses in this economically important plant species.


Assuntos
Apocynum , Fator 1 de Elongação de Peptídeos , Reação em Cadeia da Polimerase em Tempo Real , Fator 1 de Elongação de Peptídeos/genética , Apocynum/genética , Reprodutibilidade dos Testes , Genes de Plantas
14.
J Am Chem Soc ; 146(9): 5987-5997, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381029

RESUMO

Electronic structure, particularly charge state analysis, plays a crucial role in comprehending catalytic mechanisms. This study focuses on metal-free boron carbonitride (BCN) nanosheets as a case study to investigate the impact of heteroatom doping on the charge state of active sites at the edge of two-dimensional (2D) metal-free nanomaterials. Our observations revealed that the doping induces a shift in the frontier py orbital near the Fermi level, accompanied by alterations in its charge state. These changes provide insights into the nitrogen adsorption descriptors and the critical hydrogenation step, ultimately leading to the proposal of a competitive charge transfer mechanism. Additionally, this exploration has led to the screening of five BCN-type structures (P@T1-C1, S@T1-B1, O@T1-B1, P@T1-B1C2, and P@T1-B1C3) with promising nitrogen reduction reaction (NRR) performances. The BCN structure (S@T1-B1) exhibited the lowest NRR overpotential reaching -0.2 V, which is associated with the proposed charge competition mechanism. Furthermore, the investigation delves into the key step hydrogenation mechanism, descriptors, and volcano diagrams of the conformational relationships. In addition, the proposed doping strategy endows the 2D-BCN with more sensitivity toward the solar spectrum, suggesting its application as a potential photocatalyst. Overall, this study establishes a strong foundation for the advancement of nonmetal-atom-doped BCN nanosheets in nitrogen reduction applications, while also providing a versatile framework for fine-tuning edge-site activity within the broader context of two-dimensional photo/electrocatalytic materials.

15.
Biomed Chromatogr ; 38(4): e5829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351664

RESUMO

The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Feminino , Humanos , Hidrocortisona , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Esteroides
16.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256758

RESUMO

Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching -100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.

17.
J Hazard Mater ; 465: 133083, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181593

RESUMO

In this study, an organic loading (OL) of 300 mg/(L d) was set as the relative normal condition (OL-300), while 150 mg/(L d) was chosen as the condition reflecting excessively low organic loading (OL-150) to thoroughly assess the associated risks in the effluent of the biological wastewater treatment process. Compared with OL-300, OL-150 did not lead to a significant decrease in dissolved organic carbon (DOC) concentration, but it did improve dissolved organic nitrogen (DON) levels by ∼63 %. Interestingly, the dissolved organic matter (DOM) exhibited higher susceptibility to transformation into chlorinated disinfection by-products (Cl-DBPs) in OL-150, resulting in an increase in the compound number of Cl-DBPs by ∼16 %. Additionally, OL-150 induced nutrient stress, which promoted engendered human bacterial pathogens (HBPs) survival by ∼32 % and led to ∼51 % increase in the antibiotic resistance genes (ARGs) abundance through horizontal gene transfer (HGT). These findings highlight the importance of carefully considering the potential risks associated with low organic loading strategies in wastewater treatment processes.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos/microbiologia , Desinfecção/métodos , Nitrogênio , Purificação da Água/métodos
18.
Int J Biol Macromol ; 254(Pt 2): 127778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926320

RESUMO

Abiotic stress is one of the major environmental constraints limiting plant growth. Syntrichia caninervis is one of the unique plant models that can cope with harsh environments. Reactive oxygen species (ROS) are a vital signaling molecule for protecting plants from oxidative stress, but research on ROS in S. caninervis is limited. Here, we identified 112 ROS genes in S. caninervis, including 40 GSTs, 51 PODs, 9 SODs, 6 CATs, 3 GPXs and 3 APXs families. GO and KEGG analyses showed that ROS genes are involved in responses to various stimuli and phenylpropanoid biosynthesis. ROS genes contain many stress-responsive and hormonal cis-elements in their promoter regions. More ROS genes were induced by cold stress than desiccation stress, and both conditions changed the transcript abundances of several ROS genes. CAT and POD, H2O2, MDA, and GSH were also induced under biotic stress, specifically CAT activity. The results indicated that the ScCAT genes and their activities could be strongly associated with the regulation of ROS production. This is the first systematic identification of ROS genes in S. caninervis and our findings contribute to further research into the roles of ScROS adjustment under abiotic stress while also providing excellent genetic resources for plant breeding.


Assuntos
Briófitas , Bryopsida , Frio Extremo , Humanos , Espécies Reativas de Oxigênio , Dessecação , Peróxido de Hidrogênio , Melhoramento Vegetal , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
19.
Plant Physiol ; 194(4): 2249-2262, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109500

RESUMO

Desiccation is typically fatal, but a small number of land plants have evolved vegetative desiccation tolerance (VDT), allowing them to dry without dying through a process called anhydrobiosis. Advances in sequencing technologies have enabled the investigation of genomes for desiccation-tolerant plants over the past decade. However, a dedicated and integrated database for these valuable genomic resources has been lacking. Our prolonged interest in VDT plant genomes motivated us to create the "Drying without Dying" database, which contains a total of 16 VDT-related plant genomes (including 10 mosses) and incorporates 10 genomes that are closely related to VDT plants. The database features bioinformatic tools, such as blast and homologous cluster search, sequence retrieval, Gene Ontology term and metabolic pathway enrichment statistics, expression profiling, co-expression network extraction, and JBrowser exploration for each genome. To demonstrate its utility, we conducted tailored PFAM family statistical analyses, and we discovered that the drought-responsive ABA transporter AWPM-19 family is significantly tandemly duplicated in all bryophytes but rarely so in tracheophytes. Transcriptomic investigations also revealed that response patterns following desiccation diverged between bryophytes and angiosperms. Combined, the analyses provided genomic and transcriptomic evidence supporting a possible divergence and lineage-specific evolution of VDT in plants. The database can be accessed at http://desiccation.novogene.com. We expect this initial release of the "Drying without Dying" plant genome database will facilitate future discovery of VDT genetic resources.


Assuntos
Briófitas , Dessecação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Genoma de Planta/genética , Transcriptoma/genética , Briófitas/genética
20.
J Headache Pain ; 24(1): 161, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053071

RESUMO

BACKGROUND: The brain functional network topology in new daily persistent headache (NDPH) is not well understood. In this study, we aim to assess the cortical functional network topological characteristics of NDPH using non-invasive neural signal recordings. METHODS: Resting-state magnetoencephalography (MEG) was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 35 patients with NDPH and 40 healthy controls (HCs). Their structural data were collected by 3T MRI. Functional connectivity (FC) of neural networks from 1 to 80 Hz frequency ranges was analyzed with topographic patterns and calculated network topological parameters with graph theory. RESULTS: In the delta (1-4 Hz) and beta (13-30 Hz) bands, the lateral occipital cortex and superior frontal gyrus FC were increased in NDPH groups compared to HCs. Graph theory analysis revealed that the NDPH had significantly increased global efficiency in the delta band and decreased nodal clustering coefficient (left medial orbitofrontal cortex) in the theta (4-8 Hz) band. The clinical characteristics had a significant correlation with network topological parameters. Age at onset of patients showed a positive correlation with global efficiency in the delta band. The degree of depression of patients showed a negative correlation with the nodal clustering coefficient (left medial orbitofrontal cortex) in the theta band. CONCLUSION: The FC and topology of NDPH in brain networks may be altered, potentially leading to cortical hyperexcitability. Moreover, medial orbitofrontal cortex is involved in the pathophysiological mechanism of depression in patients with NDPH. Increased FC observed in the lateral occipital cortex and superior frontal gyrus during resting-state MEG could serve as one of the imaging characteristics associated with NDPH.


Assuntos
Transtornos da Cefaleia , Magnetoencefalografia , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cefaleia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA