Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Bioanal Chem ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294469

RESUMO

As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.

2.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273157

RESUMO

In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.


Assuntos
Metaboloma , Irradiação Corporal Total , Animais , Humanos , Masculino , Feminino , Adulto , Biomarcadores/sangue , Pessoa de Meia-Idade , Leucemia/sangue , Leucemia/metabolismo , Macaca mulatta , Radiação Ionizante , Metabolômica/métodos
3.
Plants (Basel) ; 13(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273861

RESUMO

Coarse roots and the root plate play an important role in tree resistance to uprooting. In this study, a qualitative mechanistic model was developed to analyze coniferous tree resistance to uprooting in relation to tree morphological characteristics. The sizes of the crown, stem, and root plate of twenty sample spruces and twenty sample Korean pines were individually measured for this purpose. Using Ground Penetrating Radar (GPR), the coarse root distribution and root plate size were detected. In the qualitative mechanistic model, a larger crown area increased the overturning moment, while higher DBH and root plate mass increased the resistance moment. The resistance coefficient (Rm) was calculated by comparing resistive and overturning moments, classifying samples into three uprooting hazard levels. Trees with smaller crown areas, larger stems, and root plates tend to have higher resistance to uprooting, as indicated by higher Rm values. This qualitative mechanistic model provides a useful tool for assessing coniferous standing tree uprooting resistance.

4.
Sci Total Environ ; 951: 175540, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151612

RESUMO

Given global climate change and the projected increases in the greenhouse effect, enhancing the carbon storage capacity of forest ecosystems is especially critical. To fully realize the potential carbon sequestration, it is imperative to understand the drivers affecting carbon storage in forest ecosystems, particularly with disturbances that disrupt existing balance. In this study, we explored the effects of stem-only harvest at various thinning intensities on forest structure and carbon density in middle-aged natural secondary forests, located in the northern temperate zone. Carbon density included aboveground carbon density (ACD), soil organic carbon stocks (SOCD), and total carbon density (TCD), which was the sum of ACD and SOCD. We employed the random forest analysis method to identify significant variables influencing changes in carbon density. Structural equation modelling (SEM) was then used to determine the drivers of changes in forest carbon density. The results showed that moderate thinning (20 %-35 % trees removed), is an effective management practice for increasing the TCD in forests. Although heavy thinning (35.1 %-59.9 % trees removed) accelerated individual growth, it did not fully offset the carbon removed due to thinning. It is noteworthy that light thinning (0-19.9 % trees removed) not only reduced the species richness but also caused a significant number of tree deaths. Large live trees were an important direct determining factor of ACD, but not the only one. In addition, thinning indirectly influenced ACD by reducing canopy density and deformed tree density. The increase in dead tree density had an adverse impact on SOCD, and this phenomenon increased with the passage of recovery time. Conversely, greater thinning intensity enhanced SOCD. Moreover, TCD was directly influenced by tree height, large live trees, and stand density. Furthermore, thinning altered the conifer ratio, thereby influencing tree growth and indirectly controlling the TCD. We believe that this knowledge will be highly beneficial for successful forest management and enhancing the carbon sequestration capacity of forest ecosystems.


Assuntos
Sequestro de Carbono , Carbono , Florestas , Árvores , Carbono/análise , Agricultura Florestal , Solo/química , Mudança Climática , China , Ecossistema
5.
Methods Mol Biol ; 2836: 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995536

RESUMO

Recently, HexNAcQuest was developed to help distinguish peptides modified by HexNAc isomers, more specifically O-linked ß-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc, Tn antigen). To facilitate its usage (particularly for datasets from glycoproteomics studies), herein we present a detailed protocol. It describes example cases and procedures for which users might need to use HexNAcQuest to distinguish these two modifications.


Assuntos
Proteômica , Software , Proteômica/métodos , Isomerismo , Humanos , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Glicopeptídeos/química , Glicopeptídeos/análise , Glicoproteínas/química , Acetilgalactosamina/química , Análise de Dados , Peptídeos/química , Glicosilação
6.
Radiat Res ; 202(1): 26-37, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714310

RESUMO

BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.


Assuntos
Macaca mulatta , Metabolômica , Polietilenoglicóis , Protetores contra Radiação , Animais , Protetores contra Radiação/farmacologia , Protetores contra Radiação/farmacocinética , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Masculino , Interleucina-11 , Feminino , Metaboloma/efeitos dos fármacos , Metaboloma/efeitos da radiação , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle
7.
Metabolites ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786722

RESUMO

Exposure to ionizing radiation, accidental or intentional, may lead to delayed effects of acute radiation exposure (DEARE) that manifest as injury to organ systems, including the kidney, heart, and brain. This study examines the role of activated protein C (APC), a known mitigator of radiation-induced early toxicity, in long-term plasma metabolite and lipid panels that may be associated with DEARE in APCHi mice. The APCHi mouse model used in the study was developed in a C57BL/6N background, expressing the D168F/N173K mouse analog of the hyper-activatable human D167F/D172K protein C variant. This modification enables increased circulating APC levels throughout the mouse's lifetime. Male and female cohorts of C57BL/6N wild-type and APCHi transgenic mice were exposed to 9.5 Gy γ-rays with their hind legs shielded to allow long-term survival that is necessary to monitor DEARE, and plasma was collected at 6 months for LC-MS-based metabolomics and lipidomics. We observed significant dyslipidemia, indicative of inflammatory phenotype, upon radiation exposure. Additionally, observance of several other metabolic dysregulations was suggestive of gut damage, perturbations in TriCarboxylic Acid (TCA) and urea cycles, and arginine metabolism. We also observed gender- and genotype-modulated metabolic perturbations post radiation exposure. The APCHi mice showed near-normal abundance for several lipids. Moreover, restoration of plasma levels of some metabolites, including amino acids, citric acid, and hypoxanthine, in APCHi mice is indicative of APC-mediated protection from radiation injuries. With the help of these findings, the role of APC in plasma molecular events after acute γ-radiation exposure in a gender-specific manner can be established for the first time.

8.
Radiat Res ; 201(5): 371-383, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253059

RESUMO

A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.


Assuntos
Macaca mulatta , Metabolômica , Irradiação Corporal Total , Animais , Irradiação Corporal Total/efeitos adversos , Masculino , Metaboloma/efeitos da radiação , Vitamina E/metabolismo , Vitamina E/análogos & derivados , Protetores contra Radiação/farmacologia , Raios gama/efeitos adversos , Cromanos
9.
J Proteome Res ; 23(1): 95-106, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38054441

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.


Assuntos
Aprendizado Profundo , Humanos , Animais , Camundongos , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/química , N-Acetilglucosaminiltransferases/metabolismo
10.
PLoS One ; 18(10): e0287654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37816000

RESUMO

OBJECTIVE: High-dose prednisone use, lasting several months or longer, is the primary initial therapy for myasthenia gravis (MG). Upwards of a third of patients do not respond to treatment. Currently no biomarkers can predict clinical responsiveness to corticosteroid treatment. We conducted a discovery-based study to identify treatment responsive biomarkers in MG using sera obtained at study entry to the thymectomy clinical trial (MGTX), an NIH-sponsored randomized, controlled study of thymectomy plus prednisone versus prednisone alone. METHODS: We applied ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry to obtain comparative serum metabolomic and lipidomic profiles at study entry to correlate with treatment response at 6 months. Treatment response was assessed using validated outcome measures of minimal manifestation status (MMS), MG-Activities of Daily Living (MG-ADL), Quantitative MG (QMG) score, or a strictly defined composite measure of response. RESULTS: Increased serum levels of phospholipids were associated with treatment response as assessed by QMG, MMS, and the Responders classification, but all measures showed limited overlap in metabolomic profiles, in particular the MG-ADL. A panel including histidine, free fatty acid (13:0), γ-cholestenol and guanosine was highly predictive of the strictly defined treatment response measure. The AUC in Responders' prediction for these markers was 0.90 irrespective of gender, age, thymectomy or baseline prednisone use. Pathway analysis suggests that xenobiotic metabolism could play a major role in treatment resistance. There was no association with outcome and gender, age, thymectomy or baseline prednisone use. INTERPRETATION: We have defined a metabolomic and lipidomic profile that can now undergo validation as a treatment predictive marker for MG patients undergoing corticosteroid therapy. Metabolomic profiles of outcome measures had limited overlap consistent with their assessing distinct aspects of treatment response and supporting unique biological underpinning for each outcome measure. Interindividual variation in prednisone metabolism may be a determinate of how well patients respond to treatment.


Assuntos
Atividades Cotidianas , Miastenia Gravis , Humanos , Prednisona/efeitos adversos , Glucocorticoides/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Terapia Combinada , Timectomia/métodos , Resultado do Tratamento
11.
J Food Sci ; 88(11): 4602-4619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755701

RESUMO

Blueberries are a nutritious and popular berry worldwide. The physical and chemical properties of blueberries constantly change through the cycle of the supply chain (from harvest to sale). The purpose of this study was to develop a rapid method for detecting the properties of packaged blueberries based on near-infrared (NIR) spectroscopy. NIR was applied to quantitatively determine the soluble solid content (SSC) of polyethylene (PE)-packaged blueberries. An orthogonal partial least squares discriminant analysis model was established to show the correlation between spectral data and the measured SSC. Multiplicative scattering correction, standard normal variable, Savitzky-Golay convolution first derivative, and normalization (Normalize) were used for spectra preprocessing. Uninformative variables elimination, competitive adaptive reweighted sampling, and iteratively retaining informative variables were jointly used for wavelength optimization. NIR-based SSC prediction models for unpacked blueberries and PE-packaged blueberries were developed using partial least squares (PLS). The prediction model for PE-packaged samples (RP 2 = 0.876, root mean square error of prediction [RMSEP] = 0.632) had less precision than the model for unpacked samples (RP 2 = 0.953, RMSEP = 0.611). To reduce the effect of PE, the back propagation (BP) neural network and PLS were combined into the BP-PLS algorithm based on the residual learning algorithm. The model of BP-PLS (RP 2 = 0.947, RMSEP = 0.414) was successfully developed to improve the prediction accuracy of SSC for PE-packaged blueberries. The results suggested a promising way of using the BP-PLS method in tandem with NIR for the rapid detection of the SSC of PE-packaged blueberries. PRACTICAL APPLICATION: Most of the NIR-based research used unpacked blueberries as samples, while the use of packaged blueberries would provide researchers with a better understanding of the crucial factors at different phases of the blueberry supply chain (from harvest to sale). To meet market demands and minimize losses, NIR spectroscopy has been proven to be a rapid and nondestructive method for the determination of the SSC of PE-packaged blueberries. This study provides an effective method for monitoring the properties of blueberries in the entire supply chain.


Assuntos
Mirtilos Azuis (Planta) , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Polietileno , Algoritmos , Redes Neurais de Computação
12.
Metabolites ; 13(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110184

RESUMO

Survivors of acute radiation exposure are likely to experience delayed effects that manifest as injury in late-responding organs such as the heart. Non-invasive indicators of radiation-induced cardiac dysfunction are important in the prediction and diagnosis of this disease. In this study, we aimed to identify urinary metabolites indicative of radiation-induced cardiac damage by analyzing previously collected urine samples from a published study. The samples were collected from male and female wild-type (C57BL/6N) and transgenic mice constitutively expressing activated protein C (APCHi), a circulating protein with potential cardiac protective properties, who were exposed to 9.5 Gy of γ-rays. We utilized LC-MS-based metabolomics and lipidomics for the analysis of urine samples collected at 24 h, 1 week, 1 month, 3 months, and 6 months post-irradiation. Radiation caused perturbations in the TCA cycle, glycosphingolipid metabolism, fatty acid oxidation, purine catabolism, and amino acid metabolites, which were more prominent in the wild-type (WT) mice compared to the APCHi mice, suggesting a differential response between the two genotypes. After combining the genotypes and sexes, we identified a multi-analyte urinary panel at early post-irradiation time points that predicted heart dysfunction using a logistic regression model with a discovery validation study design. These studies demonstrate the utility of a molecular phenotyping approach to develop a urinary biomarker panel predictive of the delayed effects of ionizing radia-tion. It is important to note that no live mice were used or assessed in this study; instead, we focused solely on analyzing previously collected urine samples.

13.
Life Sci Space Res (Amst) ; 37: 78-87, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087182

RESUMO

PURPOSE: Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS: At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS: A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION: Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.


Assuntos
Radiação Cósmica , Prótons , Humanos , Coelhos , Masculino , Ratos , Camundongos , Animais , Lactente , Oxigênio , Íons , Coração/efeitos da radiação , Relação Dose-Resposta à Radiação
14.
Front Plant Sci ; 14: 1121287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968398

RESUMO

Visible and near-infrared (Vis-NIR) spectroscopy has been widely applied in many fields for the qualitative and quantitative analysis. Chemometric techniques including pre-processing, variable selection, and multivariate calibration models play an important role to better extract useful information from spectral data. In this study, a new de-noising method (lifting wavelet transform, LWT), four variable selection methods, as well as two non-linear machine learning models were simultaneously analyzed to compare the impact of chemometric approaches on wood density determination among various tree species and geographical locations. In addition, fruit fly optimization algorithm (FOA) and response surface methodology (RSM) were employed to optimize the parameters of generalized regression neural network (GRNN) and particle swarm optimization-support vector machine (PSO-SVM), respectively. As for various chemometric methods, the optimal chemometric method was different for the same tree species collected from different locations. FOA-GRNN model combined with LWT and CARS deliver the best performance for Chinese white poplar of Heilongjiang province. In contrast, PLS model showed a good performance for Chinese white poplar collected from Jilin province based on raw spectra. However, for other tree species, RSM-PSO-SVM models can improve the performance of wood density prediction compared to traditional linear and FOA-GRNN models. Especially for Acer mono Maxim, when compared to linear models, the coefficient of determination of prediction set ( R p 2 ) and relative prediction deviation (RPD) were increased by 47.70% and 44.48%, respectively. And the dimensionality of Vis-NIR spectral data was decreased from 2048 to 20. Therefore, the appropriate chemometric technique should be selected before building calibration models.

15.
J Proteome Res ; 22(4): 1116-1126, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977373

RESUMO

There are currently four radiation medical countermeasures that have been approved by the United States Food and Drug Administration to mitigate hematopoietic acute radiation syndrome, all of which are repurposed radiomitigators. The evaluation of additional candidate drugs that may also be helpful for use during a radiological/nuclear emergency is ongoing. A chlorobenzyl sulfone derivative (organosulfur compound) known as Ex-Rad, or ON01210, is one such candidate medical countermeasure, being a novel, small-molecule kinase inhibitor that has demonstrated efficacy in the murine model. In this study, nonhuman primates exposed to ionizing radiation were subsequently administered Ex-Rad as two treatment schedules (Ex-Rad I administered 24 and 36 h post-irradiation, and Ex-Rad II administered 48 and 60 h post-irradiation) and the proteomic profiles of serum using a global molecular profiling approach were assessed. We observed that administration of Ex-Rad post-irradiation is capable of mitigating radiation-induced perturbations in protein abundance, particularly in restoring protein homeostasis, immune response, and mitigating hematopoietic damage, at least in part after acute exposure. Taken together, restoration of functionally significant pathway perturbations may serve to protect damage to vital organs and provide long-term survival benefits to the afflicted population.


Assuntos
Contramedidas Médicas , Protetores contra Radiação , Estados Unidos , Animais , Camundongos , Proteômica , Protetores contra Radiação/farmacologia , Primatas
16.
Int J Radiat Biol ; 99(7): 1109-1118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827630

RESUMO

PURPOSE: The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS: Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS: Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS: Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.


Assuntos
Proteína C , Lesões por Radiação , Ratos , Animais , Feminino , Humanos , Proteína C/farmacologia , Metaboloma , Metabolômica
17.
Cancers (Basel) ; 15(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672353

RESUMO

In radiation therapy of tumors in the chest, such as in lung or esophageal cancer, part of the heart may be situated in the radiation field. This can lead to the development of radiation-induced heart disease. The mechanisms by which radiation causes long-term injury to the heart are not fully understood, but investigations in pre-clinical research models can contribute to mechanistic insights. Recent developments in X-ray technology have enabled partial heart irradiation in mouse models. In this study, adult male and female C57BL/6J mice were exposed to whole heart (a single dose of 8 or 16 Gy) and partial heart irradiation (16 Gy to 40% of the heart). Plasma samples were collected at 5 days and 2 weeks after the irradiation for metabolomics analysis, and the cardiac collagen deposition, mast cell numbers, and left ventricular expression of Toll-like receptor 4 (TLR4) were examined in the irradiated and unirradiated parts of the heart at 6 months after the irradiation. Small differences were found in the plasma metabolite profiles between the groups. However, the collagen deposition did not differ between the irradiated and unirradiated parts of the heart, and radiation did not upregulate the mast cell numbers in either part of the heart. Lastly, an increase in the expression of TLR4 was seen only after a single dose of 8 Gy to the whole heart. These results suggest that adverse tissue remodeling was not different between the irradiated and unirradiated portions of the mouse heart. While there were no clear differences between male and female animals, additional work in larger cohorts may be required to confirm this result, and to test the inhibition of TLR4 as an intervention strategy in radiation-induced heart disease.

18.
Clin Cancer Res ; 29(5): 921-929, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508164

RESUMO

PURPOSE: Radiotherapy is a curative therapeutic modality used to treat cancers as a single agent or in combination with surgery and chemotherapy. Advanced radiotherapy technologies enable treatment with large fractions and highly conformal radiation doses to effect free-radical damage to cellular DNA leading to cell-cycle arrest, cell death, and innate immune response (IIR) stimulation. EXPERIMENTAL DESIGN: To understand systemic clinical responses after radiation exposure, proteomic and metabolomic analyses were performed on plasma obtained from patients with cancer at intervals after prostate stereotactic body radiotherapy. Pathway and multivariate analyses were used to delineate molecular alterations following radiotherapy and its correlation with clinical outcomes. RESULTS: DNA damage response increased within the first hour after treatment and returned to baseline by 1 month. IIR signaling also increased within 1 hour of treatment but persisted for up to 3 months thereafter. Furthermore, robust IIR and metabolite elevations, consistent with an early proinflammatory M1-mediated innate immune activation, were observed in patients in remission, whereas patients experiencing prostate serum antigen-determined disease progression demonstrated less robust immune responses and M2-mediated metabolite elevations. CONCLUSIONS: To our knowledge, these data are the first report of longitudinal proteomic and metabolomic molecular responses in patients after radiotherapy for cancers. The data supports innate immune activation as a critical clinical response of patients receiving radiotherapy for prostate cancer. Furthermore, we propose that the observed IIR may be generalized to the treatment of other cancer types, potentially informing multidisciplinary therapeutic strategies for cancer treatment.


Assuntos
Neoplasias da Próstata , Radioterapia Conformacional , Masculino , Humanos , Antígeno Prostático Específico , Proteômica , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Imunidade Inata
19.
Front Plant Sci ; 13: 1006292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267936

RESUMO

Wood density, as a key indicator to measure wood properties, is of weighty significance in enhancing wood utilization and modifying wood properties in sustainable forest management. Visible-near-infrared (Vis-NIR) spectroscopy provides a feasible and efficient solution for obtaining wood density by the advantages of its efficiency and non-destructiveness. However, the spectral responses are different in wood products with different moisture content conditions, and changes in external factors may cause the regression model to fail. Although some calibration transfer methods and convolutional neural network (CNN)-based deep transfer learning methods have been proposed, the generalization ability and prediction accuracy of the models still need to be improved. For the prediction problem of Vis-NIR wood density in different moisture contents, a deep transfer learning hybrid method with automatic calibration capability (Resnet1D-SVR-TrAdaBoost.R2) was proposed in this study. The disadvantage of overfitting was avoided when CNN processes small sample data, which considered the complex exterior factors in actual production to enhance feature extraction and migration between samples. Density prediction of the method was performed on a larch dataset with different moisture content conditions, and the hybrid method was found to achieve the best prediction results under the calibration samples with different target domain calibration samples and moisture contents, and the performance of models was better than that of the traditional calibration transfer and migration learning methods. In particular, the hybrid model has achieved an improvement of about 0.1 in both R 2 and root mean square error (RMSE) values compared to the support vector regression model transferred by piecewise direct standardization method (SVR+PDS), which has the best performance among traditional calibration methods. To further ascertain the generalizability of the hybrid model, the model was validated with samples collected from mixed moisture contents as the target domain. Various experiments demonstrated that the Resnet1D-SVR-TrAdaBoost.R2 model could predict larch wood density with a high generalization ability and accuracy effectively but was computation consuming. It showed the potential to be extended to predict other metrics of wood.

20.
J Am Soc Mass Spectrom ; 33(10): 2008-2012, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122299

RESUMO

Protein glycosylation plays crucial roles in the regulation of diverse biological processes. As a critical step, mass spectrometry-based site-specific analysis of protein glycosylation is important to better understand these events. Despite the great progress, characterization of structural isomers of glycans and glycopeptides remains challenging. In typical glycoproteomic analysis, collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) fragmentation produces abundant saccharide oxonium ions containing N-acetylhexosamine (HexNAc) residues. However, it has been difficult to distinguish isobaric GalNAc and GlcNAc modifications by using mass spectrometry only. By using intensities of oxonium ions of standard O-GlcNAc/O-GalNAc peptides, we systematically investigated the fragmentation patterns of different ions. Then a binary logistic regression model was established by training comprehensive data sets from glycoproteomics studies reported. The model was then tested with independent O-glycoproteomics data sets, with reliable classification achieved (>87% accuracy). In comparison to empirical observations and criteria used previously, our model is accurate and generalized. Based on this model, a corresponding Web server HexNAcQuest has been constructed, which is freely accessible to users. The model can also be easily integrated in MS-based glycoproteomics workflows to distinguish the isobaric HexNAc modifications.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/química , Glicosilação , Peptídeos/metabolismo , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA