Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110554, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184441

RESUMO

Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.

2.
Heliyon ; 10(9): e30703, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756588

RESUMO

The progression of liver diseases, from viral hepatitis and fatty liver disease to cirrhosis and hepatocellular carcinoma (HCC), is the most representative series of pathological events in liver diseases. While serotonin (5-HT) primarily regulates brain functions such as psychology, mood, and appetite in the central nervous system (CNS), peripheral 5-HT plays a crucial role in regulating tumor development, glucose and lipid metabolism, immune function and inflammatory response related to liver diseases. These peripheral physiological processes involving 5-HT are the key mechanisms driving the development of these liver diseases. This study presents an overview of the existing literature, focusing on the role of 5-HT in HCC, cirrhosis, fatty liver disease, viral hepatitis, and liver injury. In summary, while 5-HT promotes liver regeneration, it can also contribute to the progression of chronic liver disease. These findings indicate the potential for the development and use of 5-HT-related drugs for the treatment of liver diseases, including HCC and cirrhosis.

3.
J Cancer Res Clin Oncol ; 149(14): 12881-12896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466793

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) with high incidence and mortality is one of the most common malignant cancers worldwide. Increasing evidence has reported that N6-methyladenosine (m6A) modification has been considered as a major contribution to the occurrence and development of tumors. METHOD: In our study, we comprehensively analyzed the connection between m6A regulatory factors and cancer stem cells (CSCs) of HCC to establish a clinical tool for predicting its outcome. First, we concluded that the expression level of m6A regulatory factors was related with the stemness of hepatocellular carcinoma. Subsequently, we gained a ten hub regulatory factors that were associated with prognosis of hepatocellular carcinoma by overall survival (OS) analysis using ICGC and TCGA datasets, and these regulatory factors included YTHDF1, IGF2BP1, METTL3, IGF2BP3, HNRNPA2B1, IGF2BP2, RBM15B, HNRNPC, RBMX, and LRPPR. Next, we found that these ten hub m6A regulatory factors were highly expressed in CSCs, and CSCs related pathways were also enriched by the gene set variation analysis (GSVA). Then, correlation, consensus clustering and PCA analysis were performed to reveal potential therapeutic benefits of HCC. Moreover, univariate Cox regression (UNICOX), LASSON and multivariate Cox regression (MULTICOX) analyses were adopted to establish HCC prognosis prediction signature. RESULTS: Four regulatory factors RBM15B, LRPPRC, IGF2BP1, and IGF2BP3 were picked as valuable prognostic indicators. CONCLUSION: In summary, these ten hub regulatory factors would be useful therapeutic targets for HCC treatment, and RBM15B/LRPPRC/IGF2BP1/IGF2BP3 prognostic indicators can be used to guide therapy for HCC patients.

4.
Adv Healthc Mater ; 12(26): e2300970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379527

RESUMO

Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Colágeno/metabolismo , Pele
5.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766839

RESUMO

Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPß during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPß is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPß and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPß could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPß. Moreover, the results of CUT&Tag sequencing showed that C/EBPß also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPß and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPß first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hepatócitos/metabolismo , Proliferação de Células/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
6.
Front Immunol ; 14: 1258074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259452

RESUMO

Objectives: Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods: The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results: A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion: Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.


Assuntos
Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas , Via de Sinalização Wnt , Humanos , Endoderma , Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição
7.
Cells ; 11(24)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36552880

RESUMO

Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood-bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.


Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Embrionárias Humanas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Transdução de Sinais
8.
Opt Lett ; 47(19): 5056-5059, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181185

RESUMO

In recent years, low-cost high-quality non-line-of-sight (NLOS) imaging by a passive light source has been a significant research dimension. Here, we report a new, to the best of our knowledge, reconstruction method for the well-known "occluder-aided" NLOS imaging configuration based on an untrained deep decoder network. Using the interaction between the neural network and the physical forward model, the network weights can be automatically updated without the need for training data. Completion of the optimization process facilitates high-quality reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions. Simulations and experiments show the superior performance of the proposed method in terms of the details and the robustness of the reconstructed images. Our method will further promote the practical application of NLOS imaging in real scenes.

9.
Opt Express ; 30(11): 18364-18373, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221639

RESUMO

Computational ghost imaging (CGI), in which an image is retrieved from the known speckle patterns that illuminate the object and the total transmitted intensity, has shown great advances because of its advantages and potential applications at all wavelengths. However, high-quality and less time-consuming imaging has been proven challenging especially in color CGI. In this paper, we will present a new color CGI method that can achieve the reconstruction of high-fidelity images at a relatively low sampling rate (0.0625) by using plug-and-play generalized alternating projection algorithm (PnP-GAP). The spatial distribution and color information of the object are encoded into a one-dimensional light intensity sequence simultaneously by combining randomly distributed speckle patterns and a Bayer color mask as modulation patterns, which is measured by a single-pixel detector. A pre-trained deep denoising network is utilized in the PnP-GAP algorithm to achieve better results. Furthermore, a joint reconstruction and demosaicking method is developed to restore the target color information more realistically. Simulations and optical experiments are performed to verify the feasibility and superiority of our proposed scheme by comparing it with other classical reconstruction algorithms. This new color CGI scheme will enable CGI to obtain information in real scenes more effectively and further promote its practical applications.

10.
Stem Cell Res Ther ; 13(1): 218, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619172

RESUMO

BACKGROUND: Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. METHODS: By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. RESULTS: Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. CONCLUSION: Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures.


Assuntos
Células-Tronco Pluripotentes , Via de Sinalização Wnt , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Sulfato de Dextrana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células-Tronco Pluripotentes/metabolismo
11.
J Nanobiotechnology ; 19(1): 437, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930304

RESUMO

BACKGROUND: Exosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. RESULTS: In vitro, PKH26 labeled-hESC-Exosomes were shown to be internalized and integrated into TGFß-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labeled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFßRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFßRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFßRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. CONCLUSIONS: Our results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFßRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR-6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


Assuntos
Exossomos/metabolismo , Cirrose Hepática/terapia , MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteínas Smad/metabolismo , Animais , Antagomirs/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Exossomos/química , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
12.
Opt Express ; 29(21): 33558-33571, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809166

RESUMO

Optical cryptanalysis based on deep learning (DL) has grabbed more and more attention. However, most DL methods are purely data-driven methods, lacking relevant physical priors, resulting in generalization capabilities restrained and limiting practical applications. In this paper, we demonstrate that the double-random phase encoding (DRPE)-based optical cryptosystems are susceptible to preprocessing ciphertext-only attack (pCOA) based on DL strategies, which can achieve high prediction fidelity for complex targets by using only one random phase mask (RPM) for training. After preprocessing the ciphertext information to procure substantial intrinsic information, the physical knowledge DL method based on physical priors is exploited to further learn the statistical invariants in different ciphertexts. As a result, the generalization ability has been significantly improved by increasing the number of training RPMs. This method also breaks the image size limitation of the traditional COA method. Optical experiments demonstrate the feasibility and the effectiveness of the proposed learning-based pCOA method.

13.
Biomater Sci ; 9(18): 6064-6085, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34136892

RESUMO

Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-ß in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Células Endoteliais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Pericitos
14.
Front Cell Dev Biol ; 9: 711149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977001

RESUMO

Integrin ß1 (ITGB1), which acts as an extracellular matrix (ECM) receptor, has gained increasing attention as a therapeutic target for the treatment of hepatocellular carcinoma (HCC). However, the underpinning mechanism of how ITGB1 drives HCC progression remains elusive. In this study, we first found that ITGB1 expression was significantly higher in HCC tissues than in normal controls by bioinformatics analysis. Furthermore, bioinformatics analysis revealed that paxillin (PXN) and 14-3-3 protein zeta (YWHAZ) are the molecules participating in ITGB1-regulated HCC tumor cell cycle progression. Indeed, immunohistochemistry (IHC) revealed that ITGB1, paxillin, and YWHAZ were strongly upregulated in paired HCC tissue compared with adjacent normal tissues. Notably, the inhibition of ITGB1 expression by small interfering RNA (siRNA) resulted in the downregulated expression of PXN and YWHAZ in primary HCC cells, as assessed by western blot and immunostaining. In addition, ITGB1 knockdown markedly impaired the aggressive behavior of HCC tumor cells and delayed cell cycle progression as determined by cell migration assay, drug-resistance analysis, colony formation assay, quantitative real-time polymerase chain reaction (qRT-PCR), and cell cycle analysis as well as cell viability measurements. More importantly, we proved that xenograft ITGB1high tumors grew more rapidly than ITGB1low tumors. Altogether, our study showed that the ITGB1/PXN/YWHAZ/protein kinase B (AKT) axis enhances HCC progression by accelerating the cell cycle process, which offers a promising approach to halt HCC tumor growth.

15.
Clin Rev Allergy Immunol ; 58(2): 252-271, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076943

RESUMO

Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Hepatopatias/etiologia , Hepatopatias/metabolismo , Animais , Autoantígenos/imunologia , Doenças Autoimunes/diagnóstico , Autoimunidade , Biomarcadores , Diagnóstico Diferencial , Suscetibilidade a Doenças , Humanos , Imunoglobulina G/imunologia , Hepatopatias/diagnóstico , Camundongos Transgênicos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA