Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Expert Rev Respir Med ; 18(3-4): 189-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801029

RESUMO

INTRODUCTION: Extrapulmonary manifestations of pulmonary arterial hypertension (PAH) may play a critical pathobiological role and a deeper understanding will advance insight into mechanisms and novel therapeutic targets. This manuscript reviews our understanding of extrapulmonary manifestations of PAH. AREAS COVERED: A group of experts was assembled and a complimentary PubMed search performed (October 2023 - March 2024). Inflammation is observed throughout the central nervous system and attempts at manipulation are an encouraging step toward novel therapeutics. Retinal vascular imaging holds promise as a noninvasive method of detecting early disease and monitoring treatment responses. PAH patients have gut flora alterations and dysbiosis likely plays a role in systemic inflammation. Despite inconsistent observations, the roles of obesity, insulin resistance and dysregulated metabolism may be illuminated by deep phenotyping of body composition. Skeletal muscle dysfunction is perpetuated by metabolic dysfunction, inflammation, and hypoperfusion, but exercise training shows benefit. Renal, hepatic, and bone marrow abnormalities are observed in PAH and may represent both end-organ damage and disease modifiers. EXPERT OPINION: Insights into systemic manifestations of PAH will illuminate disease mechanisms and novel therapeutic targets. Additional study is needed to understand whether extrapulmonary manifestations are a cause or effect of PAH and how manipulation may affect outcomes.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/terapia , Inflamação/fisiopatologia , Animais
2.
Science ; 382(6670): 547-553, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917685

RESUMO

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

3.
Int J Exerc Sci ; 16(6): 688-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649815

RESUMO

Professional soccer is a physically demanding sport that requires players to be highly trained. Advances using GPS allow the tracking of external workloads for individual players in practice and competition, however, there is a lack of evidence on how these measures impact match results. Therefore, we analyzed external workloads by player position and determined if they vary depending on the result of competitive matches. External workloads were analyzed in professional soccer players (n = 25) across 28 competitive games. One-way ANOVA determined if workloads varied by position (striker - ST, wide midfielder - WM, central midfielder - CM, wide defender - WD, central defender - CD) or across games won (n = 8), lost (n = 13) or tied (n = 7). Repeated-measures ANOVA assessed differences in workloads specific to each position in each of the result categories. Statistical significance was set at p < 0.05. Across all games, more high-speed and very-high speed running was done by ST and WD compared to CD (p < 0.001) and CM (p < 0.001 - 0.02). Whole-team data showed no differences in any external workload variable with respect to match result (p > 0.05), however, in games won ST did more very high-speed running than in losing games (p = 0.03) and defending players did more high and very high-speed running in games tied vs. those won or lost (p < 0.05). Whole-team external workloads do not vary depending on the match result; however, high speed running may be a differentiating factor at the positional level. Coaches should consider position-specific analysis when examining player workloads.

4.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R227, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467442
5.
J Am Soc Echocardiogr ; 36(4): 411-420, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641103

RESUMO

BACKGROUND: Aortic stenosis (AS) is a degenerative valve condition that is underdiagnosed and undertreated. Detection of AS using limited two-dimensional echocardiography could enable screening and improve appropriate referral and treatment of this condition. The aim of this study was to develop methods for automated detection of AS from limited imaging data sets. METHODS: Convolutional neural networks were trained, validated, and tested using limited two-dimensional transthoracic echocardiographic data sets. Networks were developed to accomplish two sequential tasks: (1) view identification and (2) study-level grade of AS. Balanced accuracy and area under the receiver operator curve (AUROC) were the performance metrics used. RESULTS: Annotated images from 577 patients were included. Neural networks were trained on data from 338 patients (average n = 10,253 labeled images), validated on 119 patients (average n = 3,505 labeled images), and performance was assessed on a test set of 120 patients (average n = 3,511 labeled images). Fully automated screening for AS was achieved with an AUROC of 0.96. Networks can distinguish no significant (no, mild, mild to moderate) AS from significant (moderate or severe) AS with an AUROC of 0.86 and between early (mild or mild to moderate AS) and significant (moderate or severe) AS with an AUROC of 0.75. External validation of these networks in a cohort of 8,502 outpatient transthoracic echocardiograms showed that screening for AS can be achieved using parasternal long-axis imaging only with an AUROC of 0.91. CONCLUSION: Fully automated detection of AS using limited two-dimensional data sets is achievable using modern neural networks. These methods lay the groundwork for a novel method for screening for AS.


Assuntos
Estenose da Valva Aórtica , Aprendizado de Máquina , Humanos , Redes Neurais de Computação , Ecocardiografia/métodos , Reprodutibilidade dos Testes
6.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R561-R570, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036455

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.


Assuntos
Hipertensão Pulmonar , Animais , Masculino , Ratos , Modelos Animais de Doenças , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Lactatos , Monocrotalina/toxicidade , Músculo Esquelético , Artéria Pulmonar , Ratos Sprague-Dawley
8.
Environ Toxicol Chem ; 41(2): 396-409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34813674

RESUMO

The derivation of protective values for aquatic life can be enhanced by the development and use of bioavailability models. Recent advances to metals bioavailability modeling are applicable to other analyte groups and should be widely considered. We conducted a meta-analysis of the available aquatic toxicity literature for fluoride to evaluate the utility of hardness, alkalinity, and chloride as toxicity-modifying factors (TMFs) in empirical bioavailability models of freshwater taxa. The resulting optimal multiple linear regression model predicting acute fluoride toxicity to the invertebrate Hyalella azteca included all three TMFs (observed vs. predicted 50% lethal concentrations, R2 = 0.88) and the optimal model predicting toxicity to the fish Oncorhynchus mykiss included alkalinity and hardness (R2 = 0.37). At >20 mg/L chloride, the preliminary final acute values for fluoride were within 1 order of magnitude and ranged from approximately 18.1 to 56.3 mg/L, depending on water chemistry. Sensitivity of H. azteca to low-chloride conditions increased model uncertainty when chloride was <20 mg/L. Because of limited toxicity data, chronic bioavailability models were not developed, and final chronic values were derived using an acute-to-chronic ratio (ACR) approach. Accounting for TMFs, the geometric mean ACR was 5.4 for fish and invertebrate taxa (n = 6). The present assessment highlights the need to expand bioavailability modeling to include inorganic anions, particularly fluoride, and demonstrates that existing promulgated protective values for fluoride are likely overly conservative. More toxicological studies are recommended to further refine multivariate empirical bioavailability models for inorganic anions. Environ Toxicol Chem 2022;41:396-409. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Cloretos , Fluoretos/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Nature ; 577(7788): 64-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739311

RESUMO

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure1-3. As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties4-6. Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(II) bromide, nickel(II) chloride, cobalt(II) chloride and iron(II) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(II) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.

11.
Inorg Chem ; 58(19): 13314-13322, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31525034

RESUMO

The Mössbauer spectra of trigonal α-FePO4, measured between 4.2 and 300 K, exhibit hyperfine parameters characteristic of high-spin iron(III) in a pseudotetrahedral oxygen environment. Between 24.5 and 300 K, the spectra show a paramagnetic quadrupole doublet and at 24.0 K the spectrum reveals the onset of antiferromagnetic exchange. At 4.2 and 16 K, a single magnetic sextet is observed with hyperfine fields of 51.36(1) and 42.74(1) T, respectively, with an angle, θ, of 90° between the principal axis of the electric field gradient tensor in the basal plane of the trigonal unit cell and the hyperfine field along the c axis. The spectra obtained between 21 and 18 K have been fitted with two equal-area magnetic sextets with θ angles of 25 and 85°, angles which indicate that the iron(III) magnetic moments are canted away from the c axis. The reduced hyperfine field versus reduced temperature plot indicates a departure from a Brillouin S = 5/2 behavior, as a result of some magnetostriction at the Néel temperature. The Mössbauer spectra of class 1 mixed-valence SrFe3(PO4)3, measured between 4.2 and 300 K, exhibit hyperfine parameters characteristic of two high-spin iron(II) ions and one high-spin iron(III) ion in a pseudooctahedral oxygen environment. At and above 40 K, the spectra show two paramagnetic quadrupole doublets, whereas at 39.0 K the spectrum reveals the onset of ferrimagnetic exchange. Between 4.2 and 30 K, the spectra have been fitted with two magnetic sextets with θ angles of 85 and 10° for the iron(II) and iron(III) sites, respectively. The reduced hyperfine field versus reduced temperature plots for the iron(II) and iron(III) sites show a distinct departure from Brillouin S = 2 and S = 5/2 behavior, respectively, a departure that suggests a first-order magnetic transition at 39.5(5) K with differing magnetostrictions at the iron(II) and iron(III) sites.

12.
Chem Sci ; 10(27): 6651-6660, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31367318

RESUMO

Iron is one of the most abundant elements in the environment and in the human body. As an essential nutrient, iron homeostasis is tightly regulated, and iron dysregulation is implicated in numerous pathologies, including neuro-degenerative diseases, atherosclerosis, and diabetes. Endogenous iron pool concentrations are directly linked to iron ion uptake from environmental sources such as drinking water, providing motivation for developing new technologies for assessing iron(ii) and iron(iii) levels in water. However, conventional methods for measuring aqueous iron pools remain laborious and costly and often require sophisticated equipment and/or additional processing steps to remove the iron ions from the original environmental source. We now report a simplified and accurate chemical platform for capturing and quantifying the iron present in aqueous samples through use of a post-synthetically modified porous aromatic framework (PAF). The ether/thioether-functionalized network polymer, PAF-1-ET, exhibits high selectivity for the uptake of iron(ii) and iron(iii) over other physiologically and environmentally relevant metal ions. Mössbauer spectroscopy, XANES, and EXAFS measurements provide evidence to support iron(iii) coordination to oxygen-based ligands within the material. The polymer is further successfully employed to adsorb and remove iron ions from groundwater, including field sources in West Bengal, India. Combined with an 8-hydroxyquinoline colorimetric indicator, PAF-1-ET enables the simple and direct determination of the iron(ii) and iron(iii) ion concentrations in these samples, providing a starting point for the design and use of molecularly-functionalized porous materials for potential dual detection and remediation applications.

13.
Integr Environ Assess Manag ; 15(3): 374-384, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30724482

RESUMO

This study evaluated potential effects of mercury (Hg) on benthic macroinvertebrates in the South River, Virginia, USA. The study used a multiple lines of evidence approach, including spatially and temporally matched sediment chemistry, biological, and toxicological information (Sediment Quality Triad), exposure and effect analysis in bulk and interstitial sediment and interstitial water, and critical body residue analysis. Ten-day Chironomus dilutus and Hyalella azteca toxicity tests established site-specific no-effect concentrations (NOEC) at 18.9 µg/g total Hg (THg) and 102 ng/g methylmercury (MeHg). However, the benthic community at these locations was impaired, with lower mayfly and caddisfly composition. Few locations had concentrations of THg and MeHg that exceeded the NOEC in bulk or interstitial sediment. The THg concentrations in interstitial water were far below concentrations expected to reduce survival in benthic invertebrates, and only a low percentage of samples exceeded sublethal (growth) low-effect concentrations (LOEC) for THg or MeHg. The THg concentrations in invertebrate tissue did not exceed the NOEC or LOEC in the South River, and MeHg concentrations exceeded the LOEC at all locations, including those with no evidence of benthic impairment, illustrating the uncertainty associated with this line of evidence. Finally, statistical modeling that evaluated diversity of sensitive invertebrate species as a function of Hg exposure, geomorphological parameters, and physicochemical variables indicated that physicochemical and geomorphological parameters were most predictive of benthic community; where Hg was indicated, we were unable to distinguish between models with or without interstitial water Hg. Overall, the lines of evidence indicate that Hg, while clearly toxic to invertebrates at sufficiently high exposure concentrations, is not negatively impacting invertebrate communities in the South River. This study illustrates the difficulty of assessing risks to invertebrates using traditional tools of risk assessment and identifies critical gaps in knowledge that complicate the management of Hg risk. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Insetos/efeitos dos fármacos , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/química , Virginia
14.
J Am Chem Soc ; 140(27): 8526-8534, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29893567

RESUMO

Metal-organic frameworks are of interest for use in a variety of electrochemical and electronic applications, although a detailed understanding of their charge transport behavior, which is of critical importance for enhancing electronic conductivities, remains limited. Herein, we report isolation of the mixed-valence framework materials, Fe(tri)2(BF4) x (tri- = 1,2,3-triazolate; x = 0.09, 0.22, and 0.33), obtained from the stoichiometric chemical oxidation of the poorly conductive iron(II) framework Fe(tri)2, and find that the conductivity increases dramatically with iron oxidation level. Notably, the most oxidized variant, Fe(tri)2(BF4)0.33, displays a room-temperature conductivity of 0.3(1) S/cm, which represents an increase of 8 orders of magnitude from that of the parent material and is one of the highest conductivity values reported among three-dimensional metal-organic frameworks. Detailed characterization of Fe(tri)2 and the Fe(tri)2(BF4) x materials via powder X-ray diffraction, Mössbauer spectroscopy, and IR and UV-vis-NIR diffuse reflectance spectroscopies reveals that the high conductivity arises from intervalence charge transfer between mixed-valence low-spin FeII/III centers. Further, Mössbauer spectroscopy indicates the presence of a valence-delocalized FeII/III species in Fe(tri)2(BF4) x at 290 K, one of the first such observations for a metal-organic framework. The electronic structure of valence-pure Fe(tri)2 and the charge transport mechanism and electronic structure of mixed-valence Fe(tri)2(BF4) x frameworks are discussed in detail.

15.
Nat Mater ; 17(7): 625-632, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867169

RESUMO

Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe2(BDP)3 (0 ≤ x ≤ 2; BDP2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

16.
Pulm Circ ; 8(1): 2045893217743966, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29199900

RESUMO

Current evidence suggests that exercise training is beneficial in pulmonary arterial hypertension (PAH). Unfortunately, the standard supervised, hospital-based programs limit patient accessibility to this important intervention. Our proof-of-concept study aimed to provide insight into the usefulness of a prescribed walking regimen along with arginine supplementation to improve outcomes for patients with PAH. Twelve PAH patients (all women) in New York Heart Association (NYHA) functional class (FC) II (n = 7) or III (n = 5) and in stable condition for ≥ 3 months were enrolled. Patients performed home- and fitness-center- based walking at 65-75% heart rate (HR) reserve for 45 min, six sessions/week for 12 weeks. Concomitant L-arginine supplementation (6000 mg/day) was provided to maximize beneficial endothelial training adaptations. Cardiopulmonary exercise testing, 6-min walk testing (6MWT), echocardiography, laboratory studies, and quality of life (QoL) survey (SF-36) were performed at baseline and 12 weeks. Eleven patients completed the study (72 session adherence rate = 96 ± 3%). Objective improvement was demonstrated by the 6MWT distance (increased by 40 ± 13 m, P = 0.01), VO2max (increased by 2 ± 0.7 mL/kg/min, P = 0.02), time-to-VO2max (increased by 2.5 ± 0.6 min, P = 0.001), VO2 at anaerobic threshold (increased by 1.3 ± 0.5 mL/kg/min, P = 0.04), HR recovery (reduced by 68 ± 23% in slope, P = 0.01), and SF-36 subscales of Physical Functioning and Energy/Fatigue (increased by 70 ± 34% and 74 ± 34%, respectively, P < 0.05). No adverse events occurred, and right ventricular function and brain natriuretic peptide levels remained stable, suggesting safety of the intervention. This proof-of-concept study indicates that a simple walking regimen with arginine supplementation is a safe and efficacious intervention for clinically stable PAH patients, with gains in objective function and QoL measures. Further investigation in a randomized controlled trial is warranted.

17.
Inorg Chem ; 56(11): 6477-6488, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28509544

RESUMO

K3Fe(CN)6 reacts with the viologen 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium dication, (DNP)2+, to form a supramolecular complex, (DNP)3[Fe(CN)6]2·10H2O (1). The crystal structure of 1 reveals that there are two [Fe(CN)6]3- anions within an organic framework of three (DNP)2+ cations with the shortest Fe(III)···Fe(III) distances of ca. 9.8 Å, distances that minimize extensive long-range magnetic exchange coupling interactions between the [Fe(CN)6]3- anions, and, thus, 1 is paramagnetic above ca. 17 K and exhibits weak ferromagnetic coupling between 17 and 3 K and antiferromagnetic coupling between 3 and 1.8 K. The long Fe(III)···Fe(III) distances permit slow spin-spin and slow spin-lattice paramagnetic relaxation, relative to the iron-57 Larmor precession frequency, as is evidenced by the Mössbauer spectra measured between 3 and 60 K; between 85 and 295 K, rapid paramagnetic relaxation is observed. Both the slow spin-spin and slow spin-lattice relaxation are mediated by the organic, π-conjugated viologen cations. The Fe-C distances, the Mössbauer isomer shifts, the temperature dependence of the magnetic susceptibility, and the 3 K magnetization results all indicate the presence of low-spin Fe(III) ions in the [Fe(CN)6]3- anions in 1. There is no unequivocal indication of the presence of any formal electron delocalization or transfer from the [Fe(CN)6]3- anion to the (DNP)2+ cations in the results obtained from X-ray crystallography, magnetic measurements, and Mössbauer spectra. Because of enhancement of the spin-orbit coupling by the heavy-atom or -ion effect, the Fe(III) ions in the [Fe(CN)6]3- anions interact with the (DNP)2+ cations, causing them to fluoresce with increasing intensity upon cooling from 90 to 25 K when excited at 300 nm. The resulting luminescence of the viologen (DNP)2+ cation induced by the [Fe(CN)6]3- anions indicates the presence of significant mixing of the molecular orbitals derived from the [Fe(CN)6]3- anions and the molecular orbitals associated with the (DNP)2+ cations to yield bonding supramolecular orbitals in 1, a mixing that is also observed between 50 and 3 K in the temperature dependence of the isomer shift of 1.

18.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R197-R210, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784688

RESUMO

Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.


Assuntos
Treinamento Intervalado de Alta Intensidade/métodos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/terapia , Disfunção Ventricular Direita/terapia , Animais , Hipertensão Pulmonar/complicações , Hipertrofia Ventricular Direita/etiologia , Masculino , Condicionamento Físico Animal/métodos , Resistência Física/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia
19.
Dalton Trans ; 45(45): 18018-18044, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27801448

RESUMO

This review deals with our long-range goal of determining why the Prussian blue pigments, typically either the "soluble" KFeIII[FeII(CN)6]·xH2O or the alternative "insoluble" Fe[FeII(CN)6]3·xH2O compounds, used by artists from shortly after the discovery of Prussian blue in 1704 and well into the early twentieth century, often fade when exposed to light. In order to achieve this goal it was decided that first, for comparison purposes, we had to prepare and fully characterize Prussian blues prepared by various, often commercially successful, synthetic methods. The characterization has employed a large variety of modern methods to determine both the stoichiometry of the Prussian blues and the arrangement of the voids found in the latter "insoluble" Prussian blues. The refinement of synchrotron radiation derived X-ray powder diffraction data obtained for a formally soluble and an insoluble Prussian blue required refinement in the Pm3[combining macron]m space group and lead to the K1.9[FeFe(CN)18]·{1.9 OH + 7.0H2O}, 1, and FeFe(CN)18·11.0H2O, 2, stoichiometries. The former compound, 1, exhibits an apparently random iron(ii) long-range void arrangement, whereas 2 exhibits a more non-random long-range arrangement, however, a pair distribution function analysis indicates a short-range ordering of the voids in both compounds. After further detailed characterization of many Prussian blue samples, painted samples on linen canvas, were subjected to accelerated light exposure for up to 800 hours either as pure Prussian blues or mixed with (PbCO3)2Pb(OH)2, ZnO or TiO2, the white pigments often used by artists to lighten the intense Prussian blue colour. The results indicate that the first two of these white pigments play a significant role in the fading of the colour of Prussian blues. In order to achieve our long-range goal, several Prussian blue samples were prepared from "ancient" recipes published in 1758 and 1779. These so-called "ancient" samples, painted in a dark and a pale blue shade, were also subjected to accelerated light exposure. The colorimetric results, in conjunction with X-ray powder diffraction refinements, pair distribution analysis and Mössbauer spectral results, indicate that, depending on the exact method of ancient preparation, the Prussian blue pigments were sometimes badly contaminated with alumina hydrate and/or ferrihydrite, a contamination which leads to extensive fading or decolourization of the Prussian blue pigments. The presence of ferrihydrite was subsequently confirmed in the study of a surface paint fragment from an eighteenth-century polychrome sculpture.

20.
Phys Chem Chem Phys ; 18(37): 26306-26309, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27711417

RESUMO

The proportionality constant, α, between the observed isomer shifts and the calculated electron probability density at the iron nucleus has been reevaluated in terms of the correct experimental isomer shifts relative to α-iron and their corresponding accuracy, which should be considered in the linear regression fit yielding α. The iron-57 excited state nuclear quadrupole moment, Q, is not a "relative" value and its widely accepted experimental value is 0.16(1) × 10-28 m2 as also confirmed by nuclear model calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA