Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980671

RESUMO

Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm (MPN) characterized by progressive bone marrow sclerosis, extra-medullary hematopoiesis, and possible transformation to acute leukemia. In the last decade, the molecular pathogenesis of the disease has been largely uncovered. Particularly, genetic and genomic studies have provided evidence of deregulated oncogenes in PMF as well as in other MPNs. However, the mechanisms through which transformation to either the myeloid or lymphoid blastic phase remain obscure. Particularly, it is still debated whether the disease has origins in a multi-potent hematopoietic stem cells or instead in a commissioned myeloid progenitor. In this study, we aimed to shed light upon this issue by using next generation sequencing (NGS) to study both myeloid and lymphoid cells as well as matched non-neoplastic DNA of PMF patients. Whole exome sequencing revealed that most somatic mutations were the same between myeloid and lymphoid cells, such findings being confirmed by Sanger sequencing. Particularly, we found 126/146 SNVs to be the e same (including JAK2V617F), indicating that most genetic events likely to contribute to disease pathogenesis occurred in a non-commissioned precursor. In contrast, only 9/27 InDels were similar, suggesting that this type of lesion contributed instead to disease progression, occurring at more differentiated stages, or maybe just represented "passenger" lesions, not contributing at all to disease pathogenesis. In conclusion, we showed for the first time that genetic lesions characteristic of PMF occur at an early stage of hematopoietic stem cell differentiation, this being in line with the possible transformation of the disease in either myeloid or lymphoid acute leukemia.

2.
Front Oncol ; 12: 897220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276074

RESUMO

Treatment of acute myeloid leukemia (AML) has changed over the last few years, after the discovery of new drugs selectively targeting AML blasts. Although 3/7 remains the standard of care for most AML patients, several new targeted agents (such as FLT3 inhibitors, CPX-351, gemtuzumab ozogamicin, BCL-2 inhibitor, and oral azacitidine), either as single agents or combined with standard chemotherapy, are approaching clinical practice, starting a new era in AML management. Moreover, emerging evidence has demonstrated that high-risk AML patients might benefit from both allogeneic stem cell transplant and maintenance therapy, providing new opportunities, as well as new challenges, for treating clinicians. In this review, we summarize available data on first-line therapy in young AML patients focusing on targeted therapies, integrating established practice with new evidence, in the effort to outline the contours of a new therapeutic paradigm, that of a "total therapy", which goes beyond obtaining complete remission.

3.
Br J Haematol ; 199(3): 339-343, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002151

RESUMO

Idelalisib, a reversible inhibitor of PI3Kδ (phosphoinositide-3 kinase delta), showed remarkable activity in the phase II DELTA trial, leading to its approval by the European Medicines Agency (EMA) in patients with relapsed/refractory (R/R) follicular lymphoma (FL). However, real-life data on idelalisib are scarce. We treated 55 double-refractory FL patients with idelalisib in a real-life setting. With a median exposure to idelalisib of 10 months (range 1-43), overall response rate was 73%, the highest ever reported. Non-haematological toxicities were mild and manageable. At 12 months, 80% of patients were alive, and 72% disease-free. The efficacy and safety of idelalisib was confirmed in a real-life setting.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Linfoma Folicular , Humanos , Antineoplásicos/efeitos adversos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma Folicular/tratamento farmacológico , Fosfatidilinositóis/uso terapêutico , Quinazolinonas/efeitos adversos
4.
Front Oncol ; 11: 661102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557403

RESUMO

Altered cellular energetic metabolism has recently emerged as important feature of neoplastic cells. Indeed, interfering with cancer cell metabolism might represent a suitable therapeutic strategy. In this study, we aimed to assess glucose metabolism activation in human lymphomas and evaluate how metformin can exert its action on lymphoma cells. We studied a large series of human lymphomas (N = 252) and an in vitro model of Burkitt lymphoma (BL) cells. We combined molecular biology techniques, including global gene expression profiling (GEP) analysis, quantitative PCR (qPCR) and Western blotting, and biochemical assays, aimed to assess pentose phosphate pathway, tricarboxylic acid (TCA) cycle, and aerobic glycolysis rates. We found that glucose metabolism is overall enhanced in most lymphoma subtypes, based on gene expression profiling (GEP), with general shift to aerobic glycolysis. By contrast, normal B cells only showed an overall increase in glucose usage during germinal center transition. Interestingly, not only highly proliferating aggressive lymphomas but also indolent ones, like marginal zone lymphomas, showed the phenomenon. Consistently, genes involved in glycolysis were confirmed to be overexpressed in BL cells by qPCR. Biochemical assays showed that while aerobic glycolysis is increased, TCA cycle is reduced. Finally, we showed that metformin can induce cell death in BL cells by stressing cellular metabolism through the induction of GLUT1, PKM2, and LDHA. In conclusion, we unveiled glucose metabolism abnormalities in human lymphomas and characterized the mechanism of action of metformin in Burkitt lymphoma model.

5.
Front Oncol ; 11: 737300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552880

RESUMO

The efficacy of Covid-19 vaccine in hematopoietic stem cell transplantation (HSCT) recipients is still unknown. We planned a prospective study to evaluate the immune response after the administration of Covid-19 vaccine in HSCT recipients. Fifty patients previously submitted to HSCT (38 autologous and 12 allogeneic) received the mRNA-based SARS-CoV-2 vaccine BNT162b2 (Pfizer-BioNTech). Serum samples of all patients were tested for SARS-CoV-2 IgG against the Spike glycoprotein, 30 days after the second dose of vaccine. Antibody response was compared to a control group of 45 healthy subjects. Of the 50 patients tested, 12 did not develop any antibody response, including 6 patients undergoing autologous (16%) and 6 allogeneic HSCT (50%). Cyclosporine administration in allogeneic recipients and prior administration of Rituximab in the autologous setting correlated with lower antibody titers (p < 0.0003 and p=0.000, respectively). Flow cytometry of peripheral blood samples, performed 30 days after the vaccination, showed a significant correlation between the antibody response to Sars-COV2 and an increased number in CD19+ B lymphocytes (p = 0.0003) and CD56+ natural killer (NK) cells (p = 0.00). In conclusion, prior Rituximab before autologous HSCT and cyclosporine administration after allogeneic HSCT negatively affected the antibody response to Sars-COV2 vaccine, possibly due to their immunosuppressive action on CD20 +B cells and T cells, respectively. The correlation between seroconversion to Sars-COV2 and higher number of CD19 + B cells and CD56+ NK cells, suggests a central role for B and NK cells in the development of COVID-19 immunity after vaccination with a mRNA-based platform.

6.
Transplant Cell Ther ; 27(5): 371-379, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33969823

RESUMO

Many patients with hematologic malignancies receive RBC transfusion support, which often causes systemic and tissue iron toxicity. Because of their compromised bone marrow function, hematopoietic stem cell transplant (HSCT) recipients are especially vulnerable to excess iron levels. Iron toxicity may compromise transplant engraftment and eventually promote relapse by mediating oxidative and genotoxic stress in hematopoietic stem cells (HSCs) and further impairing the already dysfunctional bone marrow microenvironment in HSCT recipients. Iron toxicity is thought to be primarily mediated by its ability to induce reactive oxygen species and trigger inflammation. Elevated iron levels in the bone marrow can decrease the number of HSCs and progenitor cells, as well as their clonogenic potential, alter mesenchymal stem cell differentiation, and inhibit the expression of chemokines and adhesion molecules involved in hematopoiesis. In vivo, in vitro, and clinical studies support the concept that iron chelation therapy may limit iron toxicity in the bone marrow and promote hematologic improvement and engraftment in HSCT recipients. This review will provide an overview of the current knowledge of the detrimental impact of iron toxicity in the setting of HSCT in patients with hematologic malignancies and the use of iron restriction approaches to improve transplant outcome.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sobrecarga de Ferro , Terapia por Quelação , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Ferro/toxicidade , Sobrecarga de Ferro/etiologia , Recidiva Local de Neoplasia , Microambiente Tumoral
7.
Front Oncol ; 11: 656218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041025

RESUMO

In the past few years, our improved knowledge of acute myeloid leukemia (AML) pathogenesis has led to the accelerated discovery of new drugs and the development of innovative therapeutic approaches. The role of the immune system in AML development, growth and recurrence has gained increasing interest. A better understanding of immunological escape and systemic tolerance induced by AML blasts has been achieved. The extraordinary successes of immune therapies that harness the power of T cells in solid tumors and certain hematological malignancies have provided new stimuli in this area of research. Accordingly, major efforts have been made to develop immune therapies for the treatment of AML patients. The persistence of leukemia stem cells, representing the most relevant cause of relapse, even after allogeneic stem cell transplant (allo-SCT), remains a major hurdle in the path to cure for AML patients. Several clinical trials with immune-based therapies are currently ongoing in the frontline, relapsed/refractory, post-allo-SCT and minimal residual disease/maintenance setting, with the aim to improve survival of AML patients. This review summarizes the available data with immune-based therapeutic modalities such as monoclonal antibodies (naked and conjugated), T cell engagers, adoptive T-cell therapy, adoptive-NK therapy, checkpoint blockade via PD-1/PD-L1, CTLA4, TIM3 and macrophage checkpoint blockade via the CD47/SIRPa axis, and leukemia vaccines. Combining clinical results with biological immunological findings, possibly coupled with the discovery of biomarkers predictive for response, will hopefully allow us to determine the best approaches to immunotherapy in AML.

8.
Front Oncol ; 11: 672287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055641

RESUMO

Tyrosine kinase inhibitors (TKIs) have radically changed the outcome of chronic myeloid leukemia (CML) patients in the last 20 years. Moreover, the advent of second generation TKIs, namely nilotinib and dasatinib, have largely increased the number of CML patients achieving deep and sustained molecular responses. However, the possible mechanisms capable of influencing the maintenance of the long-term molecular response are not yet fully known and understood. In this light, polymorphisms in MDR-ABC transporters may influence the efficacy and safety of TKIs. In this study, we examined seven single nucleotide polymorphisms (SNPs) in four ABC transporter genes: ABCC1 rs212090 (5463T>A), ABCC2 rs3740066 (3972C>T), ABCC2 rs4148386 G>A, ABCC2 rs1885301 (1549G>A), ABCG2 rs2231137 (34G>A), ABCG2 rs2231142 G>C, ABCB1 rs1045642 (3435C>T), to determine their effect on the achievement and/or loss of molecular response in 90 CML patients treated with nilotinib. We found that ABCC2 rs3740066 CC and CT as well as the ABCB1 rs1045642 TT genotypes correlated with a higher probability to achieve MR3 in a shorter time (p=0.02, p=0.004, and p=0.01), whereas ABCG2 rs2231137 GG was associated with lower probability of MR3 achievement (p=0.005). Moreover, ABCC2 rs3740066 CC genotype, the ABCB1 rs1045642 CC and TT genotypes were positively correlated with MR4 achievement (p=0.02, p=0.007, and p=0.003). We then generated a predictive model incorporating the information of four genotypes, to evaluate the combined effect of the SNPs. The combination of SNPs present in the model affected the probability and the time to molecular response. This model had a high prognostic significance for both MR3 and MR4 (p=0.005 and p=0.008, respectively). Finally, we found ABCG2 rs2231142 GG genotype to be associated with a decrease risk of MR3 loss. In conclusion, MDR-transporters SNPs may significantly affect the achievement and loss of molecular response in CML patients treated with nilotinib.

9.
Blood Adv ; 4(20): 5040-5049, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33075137

RESUMO

Tosedostat is an orally administered metalloenzyme inhibitor with antiproliferative and antiangiogenic activity against hematological and solid human cancers. Clinical activity has been demonstrated in relapsed acute myeloid leukemia (AML). Thirty-three elderly patients with AML (median age, 75 years) received 120 mg tosedostat orally once daily combined with subcutaneous low-dose cytarabine (20 mg twice per day for 10 days, up to 8 cycles), until disease progression. Induction mortality was 12%. According to an intention-to-treat analysis, the complete remission (CR) rate was 48.5%, and thus the primary end point of the study was reached (expected CR, 25%). The partial remission rate was 6.1%, with an overall response rate of 54.5%. Furthermore, 4 of 33 patients had stable disease (median: 286 days). The median progression-free survival and overall survival (OS) were 203 days and 222 days, respectively. Responding patients had a longer median OS than nonresponding patients (P = .001). A microarray analysis performed in 29 of 33 patients identified 188 genes associated with clinical response (CR vs no CR). Three of them (CD93, GORASP1, CXCL16) were validated by quantitative polymerase chain reaction, which correctly classified 83% of the patients. Specifically, CR achievement was efficiently predicted by the gene expression patterns, with an overall accuracy exceeding 90%. Finally, a negative predictive value of 100% was validated in an independent series, thus representing the first molecular predictor for clinical response to a specific combination drug treatment for AML. This trial has been registered at the European Medicines Agency and on the European Clinical Trials Database (https://www.clinicaltrialsregister.eu) as #2012-000334-19.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citarabina/uso terapêutico , Glicina/análogos & derivados , Humanos , Ácidos Hidroxâmicos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Análise em Microsséries , Transcriptoma
11.
Front Oncol ; 9: 1135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709192

RESUMO

Mesenchymal stromal cells (MSCs) have, for a long time, been recognized as pivotal contributors in the set up and maintenance of the hematopoietic stem cell (HSC) niche, as well as in the development and differentiation of the lympho-hematopoietic system. MSCs also have a unique immunomodulatory capacity, which makes them able to affect, both in vitro and in vivo, the function of immune cells. These features, namely the facilitation of stem cell engraftment and the inhibition of lymphocyte responses, have both proven essential for successful allogeneic stem cell transplantation (allo-SCT), which remains the only curative option for several hematologic malignancies. For example, in steroid-refractory acute graft-vs. host disease developing after allo-SCT, MSCs have produced significant results and are now considered a treatment option. However, more recently, the other side of the MSC coin has been unveiled, because of their emerging role in creating a protective and immune-tolerant microenvironment able to support the survival of leukemic cells and affect the response to therapies. In this light, it has been proposed that the failure of current treatments to efficiently override the stroma-mediated protection of leukemic cells accounts for the high rate of relapse in acute myeloid leukemia, at least in part. In this review, we will focus on emerging microenvironment-driven mechanisms conferring a survival advantage to leukemic cells overt physiological HSCs. This body of evidence increasingly highlights the opportunity to consider tumor-microenvironment interactions when designing new therapeutic strategies.

12.
Front Oncol ; 9: 939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612105

RESUMO

Not all chronic myeloid leukemia (CML) patients are cured with tyrosine kinase inhibitors (TKIs), and a proportion of them develop resistance. Recently, continuous BCR-ABL gene expression has been found in resistant cells with undetectable BCR-ABL protein expression, indicating that resistance may occur through kinase independent mechanisms, mainly due to the persistence of leukemia stem cells (LSCs). LSCs reside in the bone marrow niche in a quiescent state, and are characterized by a high heterogeneity in genetic, epigenetic, and transcriptional mechanisms. New approaches based on single cell genomics have offered the opportunity to identify distinct subpopulations of LSCs at diagnosis and during treatment. In the one hand, TKIs are not able to efficiently kill CML-LSCs, but they may be responsible for the modification of some LSCs characteristics, thus contributing to heterogeneity within the tumor. In the other hand, the bone marrow niche is responsible for the interactions between surrounding stromal cells and LSCs, resulting in the generation of specific signals which could favor LSCs cell cycle arrest and allow them to persist during treatment with TKIs. Additionally, LSCs may themselves alter the niche by expressing various costimulatory molecules and secreting suppressive cytokines, able to target metabolic pathways, create an anti-apoptotic environment, and alter immune system functions. Accordingly, the production of an immunosuppressant milieu may facilitate tumor escape from immune surveillance and induce chemo-resistance. In this review we will focus on BCR-ABL-independent mechanisms, analyzing especially those with a potential clinical impact in the management of CML patients.

13.
Front Oncol ; 9: 1004, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649875

RESUMO

In solid tumors and hematological malignancies, including acute myeloid leukemia, some chemotherapeutic agents, such as anthracyclines, have proven to activate an immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes. This process, known as immunogenic cell death, is characterized by a variety of tumor cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1 proteins. However, in addition to with immunogenic cell death, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1, which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells. The aim of this review is to summarize the current knowledge about the mechanisms and effects by which chemotherapy results in both activation and suppression of anti-tumor immune response. Indeed, a better understanding of the whole process underlying chemotherapy-induced alterations of the immunological tumor microenvironment has important clinical implications to fully exploit the immunogenic potential of anti-leukemia agents and tune their application.

17.
Cancers (Basel) ; 10(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932105

RESUMO

Acute myeloid leukemia (AML) is a disease, which mainly affects the elderly population. Unfortunately, the prognosis of patients aged >65 years is dismal, with 1-year overall survival approaching 10% with conventional therapies. The hypothesis of harnessing the immune system against cancer, including leukemia, has been postulated for a long time, and several clinical attempts have been made in this field. In the last years, we increased our knowledge about the interplay between AML and immune cells, but no major improvement has been translated, up to now, from bench to bedside. However, the outstanding results coming from the modern immuno-oncology trials with new drugs have granted a new interest for immunotherapy in AML. Accordingly, the elderly population represents an ideal target, given the low percentage of patients eligible for allogeneic stem cell transplant. With that in mind, in the era of immunotherapy, we consider immunosenescence as the optimal background to start investigating a biology-driven approach to AML therapy in the elderly. By taking into account the physiological age-related changes of immune response, more personalized and tailored use of the new drugs and strategies harnessing the immune system against AML, has the potential to increase their efficacy and impact on clinical outcomes.

18.
Expert Rev Hematol ; 11(6): 455-461, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29792762

RESUMO

INTRODUCTION: Despite substantial progresses in acute myeloid leukemia (AML) diagnosis and treatment, at least half of patient will eventually die for the disease. In the last decades, the use of genetic and genomic approaches allowed the identification of patients with higher risk of recurrence after and/or resistance to CHT. However, though many novel drugs have been proposed and tested, only little clinical improvements have been made concerning the treatment of the so called 'high risk' patients. Areas covered: In this article, the authors, based on their own experience and the most updated literature, review the basic knowledge of AML prognostication and treatment prediction developed throughout genetic and genomic profiling, and focus on the use of gene expression profiling as a promising predictive tool. The role of next generation sequencing, run on qPCR/digital PCR platforms or polyvalent ones such as the Nanostring NCounter™ and RNA-sequencing techniques in the near future will also be briefly discussed. Expert commentary: The authors believe that a combination of genetic (including both germline and somatic data), epigenetic and transcriptional data will represent, in the future, the molecular basis for treatment decision with the highest predictive potential.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Perfil Genético , Leucemia Mieloide Aguda , Transcrição Gênica , Análise Mutacional de DNA/métodos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
19.
Blood Rev ; 32(6): 473-479, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29699840

RESUMO

Excess iron can be extremely toxic for the body and may cause organ damage in the absence of iron chelation therapy. Preclinical studies on the role of free iron on bone marrow function have shown that iron toxicity leads to the accumulation of reactive oxygen species, affects the expression of genes coding for proteins that regulate hematopoiesis, and disrupts hematopoiesis. These effects could be partially attenuated by iron-chelation treatment with deferasirox, suggesting iron toxicity may have a negative impact on the hematopoietic microenvironment. Iron toxicity is of concern in transfusion-dependent patients. Importantly, iron chelation with deferasirox can cause the loss of transfusion dependency and may induce hematological responses, although the mechanisms through which deferasirox exerts this action are currently unknown. This review will focus on the possible mechanisms of toxicity of free iron at the bone marrow level and in the bone marrow microenvironment.


Assuntos
Medula Óssea/metabolismo , Suscetibilidade a Doenças , Ferro/metabolismo , Anemia Aplástica/complicações , Anemia Aplástica/etiologia , Anemia Aplástica/metabolismo , Anemia Aplástica/terapia , Animais , Células da Medula Óssea/metabolismo , Microambiente Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/metabolismo , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/terapia , Mielofibrose Primária/complicações , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , Mielofibrose Primária/terapia
20.
Oncotarget ; 8(50): 88021-88033, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152138

RESUMO

First-line nilotinib in chronic myeloid leukemia is more effective than imatinib to achieve early and deep molecular responses, despite poor tolerability or failure observed in one-third of patients. The toxicity and efficacy of tyrosine kinase inhibitors might depend on the activity of transmembrane transporters. However, the impact of transporters genes polymorphisms in nilotinib setting is still debated. We investigated the possible correlation between single nucleotide polymorphisms of hOCT1 (rs683369 [c.480C>G]) and ABCB1 (rs1128503 [c.1236C>T], rs2032582 [c.2677G>T/A], rs1045642 [c.3435C>T]) and nilotinib efficacy and toxicity in a cohort of 78 patients affected by chronic myeloid leukemia in the context of current clinical practice. The early molecular response was achieved by 81% of patients while 64% of them attained deep molecular response (median time, 26 months). The 36-month event-free survival was 86%, whereas 58% of patients experienced toxicities. Interestingly, hOCT1 and ABCB1 polymorphisms alone or in combination did not influence event-free survival or the adverse events rate. Therefore, in contrast to data obtained in patients treated with imatinib, hOCT1 and ABCB1 polymorphisms do not impact on nilotinib efficacy or toxicity. This could be relevant in the choice of the first-line therapy: patients with polymorphisms that negatively condition imatinib efficacy might thus receive nilotinib as first-line therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA