Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Apoptosis ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190204

RESUMO

This study explores how heme oxygenase-1 affects allergic airway inflammation, specifically focusing on airway epithelium pyroptosis. Findings suggest heme oxygenase-1 binds gasdermin D C-terminal to limit release of N-terminal, which affects NLRP3-caspase 1-gasdermin D trimer formation. This enhances comprehension of anti-inflammatory activity of heme oxygenase-1 in allergic disorders.

2.
ACS Omega ; 9(28): 30685-30697, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035880

RESUMO

Photothermal therapy synergized with photodynamic therapy for the treatment of tumors has emerged as a promising strategy. However, designing photosensitizers with both high photothermal efficiency and high photodynamic performance remains challenging. In contrast, the strategy of rationalizing the design of photosensitizers using the physiological properties of tumors to improve the photon utilization of photosensitizers during phototherapy is more advantageous than the approach of endowing a single photosensitizer with complex functions. Herein, we propose a molecular design (CyNP) to convert from photothermal therapy to photodynamic synergistic photothermal therapy based on the prevalent properties of hypoxic tumors. In the normoxic region of tumors, the deactivation pathway of CyNP excited state is mainly the conversion of photon energy to thermal energy; in the hypoxic region of tumors, CyNP is reduced to CyNH by nitroreductase, and the deactivation pathway mainly includes radiation leap, energy transfer between CyNP and oxygen, and conversion of photons energy to heat energy. This strategy enables real-time fluorescence detection of hypoxic tumors, and it also provides dual-mode treatment for photothermal and photodynamic therapy of tumors, achieving good therapeutic effects in vivo tumor treatment. Our study achieves more efficient tumor photoablation and provides a reference for the design ideas of smart photosensitizers.

3.
Int J Nanomedicine ; 19: 6145-6160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911506

RESUMO

Background: Combination therapy offers superior therapeutic results compared to monotherapy. However, the outcomes of combination therapy often fall short of expectations, mainly because of increased toxicity from drug interactions and challenges in achieving the desired spatial and temporal distribution of drug delivery. Optimizing synergistic drug combination ratios to ensure uniform targeting and distribution across space and time, particularly in vivo, is a significant challenge. In this study, cRGD-coated liposomes encapsulating optimized synergistic cepharanthine (CEP; a chemotherapy drug) and IR783 (a phototherapy agent) were developed for combined chemotherapy and photothermal therapy in vitro and in vivo. Methods: An MTT assay was used to evaluate the combination index of CEP and IR783 in five cell lines. The cRGD-encapsulated liposomes were prepared via thin-film hydration, and unencapsulated liposomes served as controls for the loading of CEP and IR783. Fluorescence and photothermal imaging were used to assess the efficacy of CEP and IR783 encapsulated in liposomes at an optimal synergistic ratio, both in vitro and in vivo. Results: The combination indices of CEP and IR783 were determined in five cell lines. As a proof-of-concept, the optimal synergistic ratio (1:2) of CEP to IR783 in 4T1 cells was evaluated in vitro and in vivo. The average diameter of the liposomes was approximately 100 nm. The liposomes effectively retained the encapsulated CEP and IR783 in vitro at the optimal synergistic molar ratio for over 7 d. In vivo fluorescence imaging revealed that the fluorescence signal from cRGD-CEP-IR783-Lip was detectable at the tumor site at 4 h post-injection and peaked at 8 h. In vivo photothermal imaging of tumor-bearing mice indicated an increase in tumor temperature by 32°C within 200 s. Concurrently, cRGD-CEP-IR783-Lip demonstrated a significant therapeutic effect and robust biosafety in the in vivo antitumor experiments. Conclusion: The combination indices of CEP and IR783 were successfully determined in vitro in five cell lines. The cRGD-coated liposomes encapsulated CEP and IR783 at an optimal synergistic ratio, exhibiting enhanced antitumor effects and targeting upon application in vitro and in vivo. This study presents a novel concept and establishes a research framework for synergistic chemotherapy and phototherapy treatment.


Assuntos
Benzilisoquinolinas , Indóis , Lipossomos , Terapia Fototérmica , Lipossomos/química , Animais , Linhagem Celular Tumoral , Humanos , Feminino , Camundongos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Indóis/administração & dosagem , Terapia Fototérmica/métodos , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacocinética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/administração & dosagem , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Sinergismo Farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Terapia Combinada/métodos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Benzodioxóis
5.
Transl Pediatr ; 13(2): 236-247, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455751

RESUMO

Background: Influenza A is the most common viral pathogen isolated from pediatric clinics during influenza seasons. Some young patients with influenza manifest rapid progression with high fever and severe sequelae, such as pneumonia and meningitis. Therefore, early diagnosis and prompt treatment are highly important. Specific diagnostic tests currently include antigen detection, antibody detection, nucleic acid test and virus isolation. Rapid antigen testing is the most commonly adopted method in the outpatient setting, but false negative results are frequently observed, which causes delayed treatment and severe outcome. Routine blood test is the most commonly used detection for the outpatients. Incorporating specific blood cell counts into rapid antigen test may overcome some technical issues and enable accurate early diagnosis. Methods: We enrolled 537 children with influenza-like symptoms like fever or respiratory symptoms from pediatric outpatients and 110 children without infectious diseases for control. Routine blood tests detected by a routine analyzer and influenza A virus antigen detection were performed in the patients. Significant blood routine parameters between groups were examined by statistical tests. Parameters in routine blood test were assessed by the receiver operating characteristic curve to find the screening indicators of influenza A. Multivariate logistic regression were used to establish the optimal combinations of blood routine parameters in our screening model. Results: Two subgroups were set according to age: ≤6 years old group and >6 years old group. In each group, patients were further divided into three subgroups: the influenza A-positive-result group (A+ group) (n=259), influenza A-negative-result group (A- group) (n=277) and healthy control group (H group) (n=110). Most routine blood parameters showed significant differences among the three subgroups in each age group. Notably, lymphocyte (LYM) number, platelet (PLT) number, lymphocyte-to-monocyte ratio (LMR) and LYM multiplied by PLT (LYM*PLT) exhibited extremely significant differences. Using A- group as a reference based on the area under the curve (AUC), both age groups had a similar trend. For A- group, the optimal cutoff value of LYM*PLT was 221.6, the AUC, the sensitivity and specificity were 0.6830, 55.71% and 76.92% in the ≤6 years old group. Meanwhile, the cutoff value of LYM*PLT was 196.7, and the AUC, the sensitivity and specificity were 0.6448, 53.97% and 70.81%, respectively in the >6 years old group. Screening model based on multivariate logistic regression model revealed that LYM*PLT was the optimal parameter combinations in ≤6 years old group (AUC =0.7202), while LYM and PLT were the optimal parameter combinations in >6 years old group (AUC =0.6760). Conclusions: Several blood routine parameters in children with influenza A demonstrate differential levels in both age subgroups. The LYM*PLT exhibits the potential screening value of influenza infection.

6.
Cell Rep ; 43(3): 113947, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492220

RESUMO

N6-methyladenosine (m6A) modification has been implicated in many cell processes and diseases. YTHDF1, a translation-facilitating m6A reader, has not been previously shown to be related to allergic airway inflammation. Here, we report that YTHDF1 is highly expressed in allergic airway epithelial cells and asthmatic patients and that it influences proinflammatory responses. CLOCK, a subunit of the circadian clock pathway, is the direct target of YTHDF1. YTHDF1 augments CLOCK translation in an m6A-dependent manner. Allergens enhance the liquid-liquid phase separation (LLPS) of YTHDF1 and drive the formation of a complex comprising dimeric YTHDF1 and CLOCK mRNA, which is distributed to stress granules. Moreover, YTHDF1 strongly activates NLRP3 inflammasome production and interleukin-1ß secretion leading to airway inflammatory responses, but these phenotypes are abolished by deleting CLOCK. These findings demonstrate that YTHDF1 is an important regulator of asthmatic airway inflammation, suggesting a potential therapeutic target for allergic airway inflammation.


Assuntos
Asma , Relógios Circadianos , Humanos , Adenosina , Células Epiteliais , Inflamação , Proteínas de Ligação a RNA/genética
7.
FASEB J ; 38(3): e23472, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329323

RESUMO

Allergic asthma development and pathogenesis are influenced by airway epithelial cells in response to allergens. Heme oxygenase-1 (HO-1), an inducible enzyme responsible for the breakdown of heme, has been considered an appealing target for the treatment of chronic inflammatory diseases. Herein, we report that alleviation of allergic airway inflammation by HO-1-mediated suppression of pyroptosis in airway epithelial cells (AECs). Using house dust mite (HDM)-induced asthma models of mice, we found increased gasdermin D (GSDMD) in the airway epithelium. In vivo administration of disulfiram, a specific inhibitor of pore formation by GSDMD, decreased thymic stromal lymphopoietin (TSLP) release, T helper type 2 immune response, alleviated airway inflammation, and reduced airway hyperresponsiveness (AHR). HO-1 induction by hemin administration reversed these phenotypes. In vitro studies revealed that HO-1 restrained GSDMD-mediated pyroptosis and cytokine TSLP release in AECs by binding Nuclear Factor-Kappa B (NF-κB) p65 RHD domain and thus controlling NF-κB-dependent pyroptosis. These data provide new therapeutic indications for purposing HO-1 to counteract inflammation, which contributes to allergic inflammation control.


Assuntos
Asma , Heme Oxigenase-1 , NF-kappa B , Animais , Camundongos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Piroptose , Linfopoietina do Estroma do Timo
9.
Analyst ; 148(17): 4195-4202, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534860

RESUMO

Palladium (Pd) is an important heavy metal with excellent catalytic properties and widely used in organic chemistry and the pharmaceutical industry. Efficient and convenient analytical techniques for Pd are urgently needed due to the hazardous effects of Pd on the environment and human health. Herein, we have developed five new ratiometric probes for the selective detection of Pd0 based on the Pd-catalyzed Tsuji-Trost reaction. Among them, the F-substituted probe PF-Pd showed the largest spectral shift (148 nm) and the most sensitive response (detection limit 2.11 nM). PF-Pd was employed to determine Pd0 in tap water or lake water samples, which presented satisfactory accuracy and precision. In addition, profiting from its distinct colorimetric response, visual detection of Pd0 was performed on PF-Pd loaded test strips or in field soil samples. Furthermore, fluorescence imaging of living 4T1 cells demonstrated that PF-Pd is suitable for imaging of intracellular Pd0. The good analytical performance of PF-Pd may enable it to be widely used in the convenient, rapid, sensitive and selective detection of Pd0 in environmental or biological analysis.


Assuntos
Corantes Fluorescentes , Paládio , Humanos , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Paládio/química , Colorimetria/métodos , Imagem Óptica , Água/química
11.
Org Biomol Chem ; 21(22): 4672-4682, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219018

RESUMO

Phototherapy is a promising approach for the treatment of cancers and other diseases. So far, many photosensitizers have been developed for photodynamic therapy (PDT) or photothermal therapy (PTT). However, it remains a challenge to develop a system for synergistic PDT and PTT with specific targeting and real-time fluorescence tracking. Herein, we designed a multifunctional BODIPY derivative, Lyso-BDP, for synergistic PDT and PTT against tumors. Lyso-BDP was composed of three parts: (1) the BODIPY fluorophore was selected as a theranostic core, (2) a morpholine group modified on meso-BODIPY served as a lysosome-targeting unit for enhancing the antitumor effect, and (3) N,N-diethyl-4-vinylaniline was attached to the BODIPY core to extend its wavelength to the near-infrared region. Finally, Lyso-BDP shows near-infrared absorption and emission, photosensitizing activity, lysosomal targeting, and synergistic PDT and PTT effects, and effectively kills cancer cells both in vitro and in vivo. Therefore, our study demonstrates that Lyso-BDP can serve as a promising photosensitizer in the therapy of cancer with potential clinical application prospects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Fototerapia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
12.
ACS Omega ; 8(13): 12481-12488, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033849

RESUMO

To get a tumor-targeted contrast agent for imaging guide resection of tumors, we designed a novel fluorescent probe based on the heptamethine cyanine core, Cy7-MO, which has excellent water solubility and near-infrared photophysical and lysosomal targeting properties. The chemical structure of Cy7-MO was characterized by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The toxicity of Cy7-MO was evaluated by cell counting kit-8. Then, a cellular-level study was conducted to evaluate the suborganelle localization in 4T1-Luc1 cells, and it was also used for surgical navigation in orthotopic breast tumor resection in vivo. The results showed that Cy7-MO was well targeted to lysosomes. Importantly, the Cy7-MO probe was found to be well tolerable and exhibited excellent biocompatibility. Moreover, the orthotopic breast tumor margin was clearly visualized through fluorescence guiding of Cy7-MO. Finally, the correct tumor tissues were completely removed, and a negative margin was obtained successfully, which demonstrated an enhanced precision of surgery.

13.
Anal Bioanal Chem ; 415(12): 2209-2215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856821

RESUMO

In this work, a simple and sensitive electrochemical sensor was proposed for the detection of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity. Firstly, the BACE1 specific peptide was modified onto the Au electrode to graft a single-strand DNA with polycytosine DNA sequence (dC12) via amide bonding between peptide and dC12. Because the dC12 is abundant in phosphate groups, thus it can react with molybdate to form redox molybdophosphate, which can generate electrochemical current. Using BACE1 as a model peptidase, the proposed sensor shows a linear response range from 1 to 15 U/mL and limit of detection down to 0.05 U/mL. The sensor displays good performance for the BACE1 activity detection in human serum samples, which may have potential applications in the clinical diagnostics of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos/genética , Sequência de Bases , Peptídeos beta-Amiloides/metabolismo
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122602, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934595

RESUMO

Cell death is a fundamental feature of multicellular organisms, in which mitochondria play crucial roles. Therefore, revealing and monitoring the microenvironment of mitochondria are significant to investigate cell death process. Herein, the mitochondrial viscosity variation behaviors of a series of different cell death processes were monitored with a NIR mitochondria-targeting fluorescence probe FLV. FLV was designed based on a rotatable flavylocyanine fluorophore that presented selective and sensitive NIR fluorescence enhancement response with the increase of environmental viscosity. Fluorescence imaging experiments of living cells incubated with nystatin or under different temperature indicated that FLV was capable of imaging the change of mitochondrial viscosity. Finally, FLV was applied for monitoring the mitochondrial viscosity variation during different cell death processes. It was found that there were obvious mitochondrial viscosity increases during apoptosis, necrosis and autophagy; however, no detectable mitochondrial viscosity variation was observed in ferroptosis process incubated with ferroptosis inducer erastin or RSL3 for 6 h. These results demonstrated that FLV is a viable tool for monitoring the mitochondrial viscosity variation and is likely to be used in the diagnosis of the mitochondrial viscosity-associated cell processes and diseases.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Corantes Fluorescentes/metabolismo , Viscosidade , Mitocôndrias/metabolismo , Morte Celular , Apoptose , Células HeLa
15.
J Photochem Photobiol B ; 241: 112666, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842340

RESUMO

Cancer treatment modalities have gradually shifted from monotherapies to multimodal therapies. It is still a challenge to develop a synergistic chemo-phototherapy system with relieving tumor hypoxia, specific targeting, and real-time fluorescence tracking. In this study, we designed a multifunctional BODIPY derivative, FBD-M, for synergistic chemo-phototherapy against hypoxic tumors. FBD-M was composed of four parts: 1) The BODIPY fluorophore selected as a theranostic core, 2) A pentafluorobenzene group modified on meso-BODIPY to carry oxygen, 3) A morpholine group hooked to one side of BODIPY served as a lysosome-targeting unit for enhancing antitumor effect, and 4) An aromatic nitrogen mustard group introduced on other side of BODIPY to achieve chemotherapy. After introducing the morpholine and aromatic nitrogen mustard in BODIPY, the conjugate system of BODIPY was also expanded to realize near-infrared (NIR) phototherapy. Finally, FBD-M was obtained by a rational design, which possessed with NIR absorbance and emission, photosensitive activity, oxygen-carrying capability for relieving tumor hypoxia, high photothermal conversion efficiency, good photostability, lysosome targeting, low toxicity, and synergistic chemo-phototherapy against hypoxic tumors. FBD-M had been successfully applied for anticancer in vitro and in vivo. Our study demonstrates that FBD-M can serve as an ideal multifunctional theranostic agents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Mecloretamina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Oxigênio , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
16.
Environ Sci Pollut Res Int ; 30(3): 5799-5814, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35980525

RESUMO

To study the inorganic nitrogen in the process of interaction of river and groundwater and the changes in the microbial community, a vertical simulation device was used to simulate groundwater recharge to river water (upwelling) and river water recharge to groundwater (downwelling). The inorganic nitrogen concentrations in the soil and water solution as well as the characteristics of the microbial community were assessed to determine the inorganic nitrogen transformation and microbial community response in the heterogeneous interaction zone under hydrodynamic action, and the interaction mechanism between nitrogen transformation and the microbial community in the interaction zone was revealed. The removal rates of NO3--N in the simulated solution reached 99.1% and 99.3% under the two fluid-groundwater conversion modes, and the prolonged hydraulic retention time (HRT) of the oxidization-reduction layer in the fine clay area and the high organic matter content made the inorganic nitrogen transformation process dominated by microorganisms more complete. The denitrification during upwelling, dominated by denitrifying bacteria in Sphingomonas, Pseudomonas, Bacillus, and Arthrobacter, was stronger than that during downwelling. Dissimilatory nitrate reduction to ammonium (DNRA), controlled by some aerobic bacteria in Pseudomonas, Bacillus, and Desulfovibrio, was more intense in downflow mode than upflow mode.


Assuntos
Compostos de Amônio , Bacillus , Água Subterrânea , Microbiota , Nitrogênio , Hidrodinâmica , Desnitrificação , Nitratos , Água
17.
ACS Omega ; 7(50): 46891-46899, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570203

RESUMO

The cell plasma membrane, the natural barrier of a cell, plays critical roles in a mass of cell physiological and pathological processes. Therefore, revealing and monitoring the local status of the cell plasma membrane are of great significance. Herein, using a near-infrared (NIR) fluorescence probe BTCy, microenvironmental polarity in the cell plasma membrane was in situ monitored. BTCy showed sensitive and selective fluorescence decrease response at 706 nm with the increase of polarity as its polarity-responsive D-π-A structure. Most importantly, BTCy showed unexpected cell plasma membrane-targeting ability, probably due to its amphiphilic structure. With BTCy, the distinguishing imaging of cancer and normal cells was done, in which cancer cells exhibited significantly stronger signals due to their lower cell plasma membrane polarity. In addition, with the imaging of BTCy, the ferroptosis process was revealed with no significant cell plasma membrane polarity variation for the first time. Furthermore, BTCy was employed for in vivo imaging of tumor tissue in the 4T1-tumor-bearing mice. The polarity-responsive and cell plasma membrane-targeting properties of BTCy make it a useful tool for monitoring cell plasma membrane polarity variation, providing an efficient and simple method for tumor diagnosis.

18.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364062

RESUMO

Hypochlorous acid (HOCl) is a reactive substance that reacts with most biomolecules and is essential in physiological and pathological processes. Abnormally elevated HOCl levels may cause inflammation and other disease responses. To further understand its key role in inflammation, HOCl must be detected in situ. Here, we designed a hydroxytricyanopyrrole-based small-molecule fluorescent probe (HTCP-NTC) to monitor and identify trace amounts of HOCl in biological systems. In the presence of HOCl, HTCP-NTC released hydroxyl groups that emit strong fluorescence covering a wide wavelength range from the visible to near-infrared region owing to the resumption of the intramolecular charge transfer process. Additionally, HTCP-NTC demonstrated a 202-fold fluorescence enhancement accompanied by a large Stokes shift and a low detection limit (21.7 nM). Furthermore, HTCP-NTC provided a rapid response to HOCl within 18 s, allowing real-time monitoring of intracellular HOCl. HTCP-NTC exhibited rapid kinetics and biocompatibility, allowing effective monitoring of the exogenous and endogenous HOCl fluctuations in living cells. Finally, based on fluorescence imaging, HTCP-NTC is a potential method for understanding the relationship between inflammation and HOCl.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Imagem Óptica , Inflamação
19.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293406

RESUMO

Photodynamic therapy (PDT) is a promising noninvasive medical technology that has been approved for the treatment of a variety of diseases, including bacterial and fungal infections, skin diseases, and several types of cancer. In recent decades, many photosensitizers have been developed and applied in PDT. However, PDT is still limited by light penetration depth, although many near-infrared photosensitizers have emerged. The chemiluminescence-mediated PDT (CL-PDT) system has recently received attention because it does not require an external light source to achieve targeted PDT. This review focuses on the rational design of organic CL-PDT systems. Specifically, PDT types, light wavelength, the chemiluminescence concept and principle, and the design of CL-PDT systems are introduced. Furthermore, chemiluminescent fraction examples, strategies for combining chemiluminescence with PDT, and current cellular and animal applications are highlighted. Finally, the current challenges and possible solutions to CL-PDT systems are discussed.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luminescência , Neoplasias/tratamento farmacológico
20.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684397

RESUMO

Photodynamic therapy (PDT) has emerged as a new antitumor modality. Hypoxia, a vital characteristic of solid tumors, can be explored to stimulate the fluorescence response of photosensitizers (PSs). Considering the characteristics of PDT, the targeting of organelles employing PS would enhance antitumor effects. A new multifunctional cyanine-based PS (CLN) comprising morpholine and nitrobenzene groups was prepared and characterized. It generated fluorescence in the near-infrared (NIR) region in the presence of sodium dithionite (Na2S2O4) and nitroreductase (NTR). The response mechanism of CLN was well investigated, thus revealing that its obtained reduction product was CLNH. The obtained fluorescence and singlet oxygen quantum yield of CLNH were 8.65% and 1.60%, respectively. Additionally, the selective experiment for substrates indicated that CLN exhibited a selective response to NTR. Thus, CLN fluorescence could be selectively switched on and its fluorescence intensity increased, following a prolonged stay in hypoxic cells. Furthermore, fluorescence colocalization demonstrated that CLN could effectively target lysosomes. CLN could generate reactive oxygen species and kill tumor cells (IC50 for 4T1 cells was 7.4 µM under a hypoxic condition), following its response to NTR. NIR imaging and targeted PDT were finally applied in vivo.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Hipóxia/tratamento farmacológico , Lisossomos , Nitrorredutases , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA