Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 132: 155853, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968792

RESUMO

BACKGROUND: Heat stroke (HS) generated liver injury is a lethal emergency that occurs when the body is exposed to temperatures up to 40 °C for a few hours. PURPOSE: This study aimed to evaluate the therapeutic prospects of Catalpol (CA) from the blood-cooling herb Rehamanniae Radix on liver injury by HS. STUDY DESIGN AND METHODS: A murine HS model (41 ± 0.5 °C, 60 ± 5 % relative humidity) and two cell lines (lipopolysaccharide + 42 °C) were used to assess the protective effects of CA on physiological, pathological, and biochemical features in silico, in vivo, and in vitro. RESULTS: CA treatment significantly improved survival rates in vivo and cell viability in vitro over those of the untreated group. Additionally, CA treatment reduced core body temperature, enhanced survival time, and mitigated liver tissue damage. Furthermore, CA treatment also reduced the activities of AST and ALT enzymes in the serum samples of HS mice. Molecular docking analysis of the 28 overlapping targets between HS and CA revealed that CA has strong binding affinities for the top 15 targets. These targets are primarily involved in nine major signaling pathways, with the JAK-STAT pathway being highly associated with the other eight pathways. Our findings also indicate that CA treatment significantly downregulated the expression of proinflammatory cytokines both in vivo and in vitro while upregulating the expression of anti-inflammatory cytokines. Moreover, CA treatment reduced the levels of JAK2, phospho-STAT5, and phospho-STAT3 both in vivo and in vitro, which is consistent with its inhibition of the apoptotic markers p53, Bcl2, and Bax. CONCLUSIONS: Heat stroke-induced liver injury was inhibited by CA through the downregulation of JAK/STAT signaling.


Assuntos
Regulação para Baixo , Golpe de Calor , Hepatopatias , Fígado , Compostos de Amônio Quaternário , Transdução de Sinais , Compostos de Amônio Quaternário/farmacologia , Golpe de Calor/complicações , Fígado/efeitos dos fármacos , Fígado/lesões , Animais , Camundongos , Regulação para Baixo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Janus Quinases/metabolismo , Modelos Animais , Linhagem Celular , Hepatopatias/tratamento farmacológico , Hepatopatias/etiologia , Análise de Sobrevida , Fatores de Transcrição STAT/metabolismo
2.
J Ethnopharmacol ; 334: 118565, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002821

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY: This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS: A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS: Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION: The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.


Assuntos
Cordyceps , Iodatos , Degeneração Macular , Epitélio Pigmentado da Retina , Fator de Necrose Tumoral alfa , Animais , Degeneração Macular/tratamento farmacológico , Cordyceps/química , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Linhagem Celular , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Masculino , Necroptose/efeitos dos fármacos , Ácidos Graxos Monoinsaturados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA