Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Biol Direct ; 19(1): 78, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242533

RESUMO

Choriocarcinoma is a malignant cancer that belongs to gestational trophoblastic neoplasia (GTN). Herein, serum metabolomic analysis was performed on 29 GTN patients and 30 healthy individuals to characterize the metabolic variations during GTN progression. Ultimately 24 differential metabolites (DMs) were identified, of which, Equol was down-regulated in GTN patients, whose VIP score is the 3rd highest among the 24 DMs. As an intestinal metabolite of daidzein, the anticancer potential of Equol has been demonstrated in multiple cancers, but not choriocarcinoma. Hence, human choriocarcinoma cell lines JEG-3 and Bewo were used and JEG-3-derived subcutaneous xenograft models were developed to assess the effect of Equol on choriocarcinoma. The results suggested that Equol treatment effectively suppressed choriocarcinoma cell proliferation, induced cell apoptosis, and reduced tumorigenesis. Label-free quantitative proteomics showed that 136 proteins were significantly affected by Equol and 20 proteins were enriched in Gene Ontology terms linked to protein degradation. Tripartite motif containing 21 (TRIM21), a E3 ubiquitin ligase, was up-regulated by Equol. Equol-induced effects on choriocarcinoma cells could be reversed by TRIM21 inhibition. Annexin A2 (ANXA2) interacted with TRIM21 and its ubiquitination was modulated by TRIM21. We found that TRIM21 was responsible for proteasome-mediated degradation of ANXA2 induced by Equol, and the inhibitory effects of Equol on the malignant behaviors of choriocarcinoma cells were realized by TRIM21-mediated down-regulation of ANXA2. Moreover, ß-catenin activation was inhibited by Equol, which also depended on TRIM21-mediated down-regulation of ANXA2. Taken together, Equol may be a novel candidate for the treatment for choriocarcinoma.


Assuntos
Anexina A2 , Coriocarcinoma , Equol , Ubiquitinação , Humanos , Feminino , Anexina A2/metabolismo , Anexina A2/genética , Coriocarcinoma/metabolismo , Coriocarcinoma/genética , Equol/farmacologia , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Gravidez , Camundongos Nus , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Camundongos Endogâmicos BALB C
2.
ACS Catal ; 14(16): 12074-12081, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39169908

RESUMO

Structural metamorphosis of metal-organic frameworks (MOFs) eliciting highly active metal-hydroxide catalysts has come to the fore lately, with much promise. However, the role of organic ligands leaching into electrolytes during alkaline hydrolysis remains unclear. Here, we elucidate the influence of organic carboxylate anions on a family of Ni or NiFe-based hydroxide type catalysts during the oxygen evolution reaction. After excluding interfering variables, i.e., electrolyte purity, Ohmic loss, and electrolyte pH, the experimental results indicate that adding organic anions to the electrolyte profoundly impacts the redox potential of the Ni species versus with only a negligible effect on the oxygen evolution activities. In-depth studies demonstrate plausible reasons behind those observations and allude to far-reaching implications in controlling electrocatalysis in MOFs, mainly where compositional modularity entails fine-tuning organic anions.

3.
Domest Anim Endocrinol ; 89: 106870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38954983

RESUMO

The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.


Assuntos
Duodeno , Fígado , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Fígado/metabolismo , Fígado/enzimologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ovinos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Duodeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prenhez/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/genética
4.
J Exp Clin Cancer Res ; 43(1): 204, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044249

RESUMO

Endometrial cancer (EC) stem cells (ECSCs) are pivotal in the oncogenesis, metastasis, immune escape, chemoresistance, and recurrence of EC. However, the specific mechanism of stem cell maintenance in EC cells (ECCs) has not been clarified. We found that WTAP and m6A levels decreased in both EC and ECSCs, and that knocking down WTAP promoted ECCs and ECSCs properties, including proliferation, invasion, migration, cisplatin resistance, and self-renewal. The downregulation of WTAP leads to a decrease in the m6A modification of EGR1 mRNA, and it is difficult for IGF2BP3, as an m6A reader, to recognize and bind to EGR1 mRNA that has lost m6A modification, resulting in a decrease in the stability of EGR1 mRNA. A decrease in the EGR1 level led to a decrease of in the expression tumor suppressor gene PTEN, resulting in deregulation and loss of cellular homeostasis and thereby fostering EC stem cell traits. Notably, the enforced overexpression of WTAP, EGR1, and PTEN inhibited the oncogenic effects of ECCs and ECSCs in vivo, and the combined overexpression of WTAP + EGR1 and EGR1 + PTEN further diminished the tumorigenic potential of these cells. Our findings revealed that the WTAP/EGR1/PTEN pathway is important regulator of EC stem cell maintenance, chemotherapeutic resistance, and tumorigenesis, suggesting a novel and promising therapeutic avenue for treating EC.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Neoplasias do Endométrio , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase , Proteínas de Ligação a RNA , Humanos , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Camundongos , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Fenótipo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo
5.
J Nanobiotechnology ; 22(1): 362, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910259

RESUMO

Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Nanopartículas , Sepse , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Sepse/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , MicroRNAs/metabolismo , Camundongos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Humanos , Masculino , Lipopolissacarídeos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Multiômica
7.
Cell Death Dis ; 15(4): 242, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565547

RESUMO

Endometrial cancer (EC) cells exhibit abnormal glucose metabolism, characterized by increased aerobic glycolysis and decreased oxidative phosphorylation. Targeting cellular glucose metabolism in these cells could be an effective therapeutic approach for EC. This study aimed to assess the roles of LIN28B, PCAT5, and IGF2BP3 in the glucose metabolism, proliferation, migration, and invasion of EC cells. LIN28B highly expressed in EC, binds and stabilizes PCAT5. PCAT5, overexpressed in EC, and its 1485-2288nt region can bind to the KH1-2 domain of IGF2BP3 to prevent MKRN2 from binding to the K294 ubiquitination site of IGF2BP3, thus stabilizing IGF2BP3. Finally, IGF2BP3 promotes the aerobic glycolysis, proliferation, migration and invasion of EC cells by stabilizing the key enzymes of glucose metabolism HK2 and PKM2. Taken together, our data reveal that the LIN28B/PCAT5/IGF2BP3 axis is critical for glucose reprogramming and malignant biological behavior in EC cells. Therefore, targeting this axis may contribute to the development of a novel therapeutic strategy for EC metabolism.


Assuntos
Neoplasias do Endométrio , Glicólise , Feminino , Humanos , Linhagem Celular Tumoral , Glicólise/genética , Neoplasias do Endométrio/genética , Fosforilação Oxidativa , Glucose/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Micromachines (Basel) ; 15(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398991

RESUMO

Flat panel displays are electronic displays that are thin and lightweight, making them ideal for use in a wide range of applications, from televisions and computer monitors to mobile devices and digital signage. The Thin-Film Transistor (TFT) layer is responsible for controlling the amount of light that passes through each pixel and is located behind the liquid crystal layer, enabling precise image control and high-quality display. As one of the important parameters to evaluate the display performance, the faster response time provides more frames in a second, which benefits many high-end applications, such as applications for playing games and watching movies. To further improve the response time, the single-pixel charging efficiency is investigated in this paper by optimizing the TFT dimensions in gate driver circuits in active-matrix liquid crystal displays. The accurate circuit simulation model is developed to minimize the signal's fall time (Tf) by optimizing the TFT width-to-length ratio. Our results show that using a driving TFT width of 6790 µm and a reset TFT width of 640 µm resulted in a minimum Tf of 2.6572 µs, corresponding to a maximum pixel charging ratio of 90.61275%. These findings demonstrate the effectiveness of our optimization strategy in enhancing pixel charging efficiency and improving display performance.

9.
Nat Commun ; 14(1): 7802, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016970

RESUMO

Clear cell carcinoma (CCC), endometrioid carcinoma (EC), and serous carcinoma (SC) are the major histological subtypes of epithelial ovarian cancer (EOC), whose differences in carcinogenesis are still unclear. Here, we undertake comprehensive proteomic profiling of 80 CCC, 79 EC, 80 SC, and 30 control samples. Our analysis reveals the prognostic or diagnostic value of dysregulated proteins and phosphorylation sites in important pathways. Moreover, protein co-expression network not only provides comprehensive view of biological features of each histological subtype, but also indicates potential prognostic biomarkers and progression landmarks. Notably, EOC have strong inter-tumor heterogeneity, with significantly different clinical characteristics, proteomic patterns and signaling pathway disorders in CCC, EC, and SC. Finally, we infer MPP7 protein as potential therapeutic target for SC, whose biological functions are confirmed in SC cells. Our proteomic cohort provides valuable resources for understanding molecular mechanisms and developing treatment strategies of distinct histological subtypes.


Assuntos
Carcinoma Endometrioide , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/metabolismo , Proteômica , Carcinoma Endometrioide/metabolismo , Transdução de Sinais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Membrana
10.
BMC Cancer ; 23(1): 1167, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031022

RESUMO

BACKGROUND: Some biomarkers collected from routine laboratory tests have shown important value in cancer prognosis. The study aimed to evaluate the prognostic significance of routine laboratory biomarkers in patients with endometrial cancer (EC) and to develop credible prognostic nomogram models for clinical application. METHODS: A total of 727 patients were randomly divided into a training set and a validation set. Cox proportional hazards models were used to evaluate each biomarker's prognostic value, and independent prognostic factors were used to generate overall survival (OS) and progression-free survival (PFS) nomgrams. The efficacy of the nomograms were evaluated by Harrell's concordance index (C-index), receiver operating characteristic (ROC) curves, decision curve analysis (DCA), calibration curves, X-tile analysis and Kaplan‒Meier curves. RESULTS: Ten significant biomarkers in multivariate Cox analysis were integrated to develop OS and PFS nomograms. The C-indices of the OS- nomogram in the training and validation sets were 0.885 (95% confidence interval (CI), 0.810-0.960) and 0.850 (95% CI, 0.761-0.939), respectively; those of the PFS- nomogram in the training and validation sets were 0.903 (95% CI, 0.866-0.940) and 0.825 (95% CI, 0.711-0.939), respectively. ROC, DCA and calibration curves showed better clinical application value for the nomograms incorporating routine laboratory biomarkers. X-tile analysis and Kaplan‒Meier curves showed that the nomograms were stable and credible in evaluating patients at different risks. CONCLUSIONS: Nomogram models incorporating routine laboratory biomarkers, including NLR, MLR, fibrinogen, albumin and AB blood type, were demonstrated to be simple, reliable and favourable in predicting the outcomes of patients with EC.


Assuntos
Neoplasias do Endométrio , Nomogramas , Feminino , Humanos , Albuminas , Biomarcadores , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/cirurgia , Prognóstico
11.
Aging (Albany NY) ; 15(19): 10322-10346, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796199

RESUMO

The deregulation of fatty acid metabolism plays a pivotal role in cancer. Our objective is to construct a prognostic model for patients with endometrial carcinoma (EC) based on genes related to fatty acid metabolism-related genes (FAMGs). RNA sequencing and clinical data for EC were obtained from The Cancer Genome Atlas (TCGA). Lasso-Penalized Cox regression was employed to derive the risk formula for the model, the score = esum(corresponding coefficient × each gene's expression). Gene set enrichment analysis (GSEA) was utilized to examine the enrichment of KEGG and GO pathways within this model. Correlation analysis of immune function was conducted using Single-sample GSEA (ssGSEA). The "ESTIMATE" package in R was utilized to evaluate the tumor microenvironment. The support vector machine recursive feature elimination (SVM-RFE) and randomforest maps were employed to identify key genes. The effects of PTGIS on the malignant biological behavior of EC were assessed through CCK-8 assay, transwell invasion assay, cell cycle analysis, apoptosis assay, and tumor xenografts in nude mice. A novel prognostic signature comprising 10 FAMGs (INMT, ACACB, ACOT4, ACOXL, CYP4F3, FAAH, GPX1, HPGDS, PON3, PTGIS) was developed. This risk score serves as an independent prognostic marker validated for EC. According to ssGSEA analysis, the low- and high-risk groups exhibited distinct immune enrichments. The key gene PTGIS was screened by SVM-RFE and randomforest method. Furthermore, we validated the expression of PTGIS through qRT-PCR. In vitro and in vivo experiments also confirmed the effect of PTGIS on the malignant biological behavior of EC.


Assuntos
Neoplasias do Endométrio , Animais , Camundongos , Feminino , Humanos , Camundongos Nus , Neoplasias do Endométrio/genética , Oxirredutases Intramoleculares , Ácidos Graxos , Microambiente Tumoral , Sistema Enzimático do Citocromo P-450
12.
Artigo em Inglês | MEDLINE | ID: mdl-37877885

RESUMO

Sonodynamic therapy (SDT) has considerable potential in cancer treatment and exhibits high tissue penetration with minimal damage to healthy tissues. The efficiency of SDT is constrained by the complex immunological environment and tumor treatment resistance. Herein, a specific acoustic-actuated tumor-targeted nanomachine is proposed to generate mechanical damage to lysosomes for cancer SDT. The hybrid nanomachine was assembled with gold nanoparticles (GNPs) as the core and encapsulated with macrophage exosomes modified by AS1411 aptamers (GNP@EXO-APs) to optimize the pharmacokinetics and tumor aggregation. GNP@EXO-APs could be specifically transferred to the lysosomes of tumor cells. After induction with ultrasound, GNP@EXO-APs generated strong mechanical stress to produce lysosomal-dependent cell death in cancer cells. Notably, tumor-associated macrophages were reprogrammed in the ultrasound environment to an antitumor phenotype. Enhanced mechanical destruction via GNP@EXO-APs and immunotherapy of cancer cells were verified both in vitro and in vivo under SDT. This study provides a new direction for inside-out killing effects on tumor cells for cancer treatment.

13.
Front Genet ; 14: 1238248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636266

RESUMO

Adenocarcinomas are one of the most common histological types of gastric cancer. It has been ranked fifth among common cancers and is the third among death causing cancers worldwide. The high mortality rate among patients with gastric cancer is because of its silent evolution, genetic heterogeneity, high resistance to chemotherapy as well as unavailability of highly effective therapeutic strategy. Until now a number of several treatment strategies have been developed and are being practiced such as surgery, chemotherapy, radio therapy, and immunotherapy, however, further developments are required to improve the treatment responses and reduce the side effects. Therefore, novel personal therapeutic strategies based on immunological responses should be developed by targeting different check points and key immune players. Targeting macrophages and related molecular elements can be useful to achieve these goals. In this minireview, we discuss the available treatment options, molecular underpinnings and immunological regulations associated with gastric adenocarcinoma. We further describe the possible check points and immunological targets that can be used to develop novel therapeutic options.

14.
Aging (Albany NY) ; 15(11): 4844-4860, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276865

RESUMO

Inflammatory response is an important feature of most tumors. Local inflammation promotes tumor cell immune evasion and chemotherapeutic drug resistance. We aimed to build a prognostic model for endometrial cancer patients based on inflammatory response-related genes (IRGs). RNA sequencing and clinical data for uterine corpus endometrial cancer were obtained from TCGA datasets. LASSO-penalized Cox regression was used to obtain the risk formula of the model: the score = esum(corresponding coefficient × each gene's expression). The "ESTIMATE" and "pRRophetic" packages in R were used to evaluate the tumor microenvironment and the sensitivity of patients to chemotherapy drugs. Data sets from IMvigor210 were used to evaluate the efficacy of immunotherapy in cancer patients. For experimental verification, 37 endometrial cancer and 43 normal endometrial tissues samples were collected. The mRNA expression of the IRGs was measured using qRT-PCR. The effects of IRGs on the malignant biological behaviors of endometrial cancer were detected using CCK-8, colony formation, Transwell invasion, and apoptosis assays. We developed a novel prognostic signature comprising 13 IRGs, which is an independent prognostic marker for endometrial cancer. A nomogram was developed to predict patient survival accurately. Three key IRGs (LAMP3, MEP1A, and ROS1) were identified in this model. Furthermore, we verified the expression of the three key IRGs using qRT-PCR. Functional experiments also confirmed the influence of the three key IRGs on the malignant biological behavior of endometrial cancer. Thus, a characteristic model constructed using IRGs can predict the survival, chemotherapeutic drug sensitivity, and immunotherapy response in patients with endometrial cancer.


Assuntos
Neoplasias do Endométrio , Proteínas Tirosina Quinases , Humanos , Feminino , Proteínas Proto-Oncogênicas , Neoplasias do Endométrio/genética , Prognóstico , Nomogramas , Microambiente Tumoral/genética
15.
Micromachines (Basel) ; 14(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985058

RESUMO

In recent years, Kubernetes (K8s) has become a dominant resource management and scheduling system in the cloud. In practical scenarios, short-running cloud workloads are usually scheduled through different scheduling algorithms provided by Kubernetes. For example, artificial intelligence (AI) workloads are scheduled through different Volcano scheduling algorithms, such as GANG_MRP, GANG_LRP, and GANG_BRA. One key challenge is that the selection of scheduling algorithms has considerable impacts on job performance results. However, it takes a prohibitively long time to select the optimal algorithm because applying one algorithm in one single job may take a few minutes to complete. This poses the urgent requirement of a simulator that can quickly evaluate the performance impacts of different algorithms, while also considering scheduling-related factors, such as cluster resources, job structures and scheduler configurations. In this paper, we design and implement a Kubernetes simulator called K8sSim, which incorporates typical Kubernetes and Volcano scheduling algorithms for both generic and AI workloads, and provides an accurate simulation of their scheduling process in real clusters. We use real cluster traces from Alibaba to evaluate the effectiveness of K8sSim, and the evaluation results show that (i) compared to the real cluster, K8sSim can accurately evaluate the performance of different scheduling algorithms with similar CloseRate (a novel metric we define to intuitively show the simulation accuracy), and (ii) it can also quickly obtain the scheduling results of different scheduling algorithms by accelerating the scheduling time by an average of 38.56×.

16.
Front Oncol ; 13: 1097015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937436

RESUMO

Background: Endometrial cancer (EC) is a common gynecological cancer worldwide and the sixth most common female malignant tumor. A large number of studies conducted through database mining have identified many biomarkers that may be related to survival and prognosis. However, the predictive ability of single-gene biomarkers is not sufficiently accurate. In recent years, tumors have been shown to interact closely with their microenvironment, and tumor-infiltrating immune cells in the tumor microenvironment were associated with therapeutic effects. Furthermore, sequencing technology has evolved and allowed the identification of genetic signatures that may improve prediction results. The purpose of this research was to discover the Cancer Genome Atlas (TCGA) data to evaluate new genetic features that can predict the prognosis of EC. Methods: mRNA expression profiling was analyzed in patients with EC identified in the TCGA database (n = 530). Differentially expressed genes at different stages of EC were screened using the immune cell enrichment score (ImmuneScore). Univariate and multivariate Cox regression analyses was applied to evaluate genes significantly related to overall survival and establish the prognostic risk parameter formula. Kaplan-Meier survival curves and the logarithmic rank method were applied to verify the importance of risk parameters for the prognostic forecast. The accuracy of survival prediction was confirmed using the nomogram and Receiver Operating Characteristic (ROC) curve analysis. The mRNA expression of eight genes were measured by qRT-PCR. According to COX and HR values, NBAT1, a representative gene among 8 genes, was selected for CCK-8 assay, colony formation assay and transwell invasion assay to verify the effect on survival. Results: Eight related genes (NBAT1, GFRA4, PTPRT, DLX4, RANBP3L, UNQ6494, KLRB1, and PRAC1) were discovered to be significantly associated with the overall survival rate. According to these eight-gene signatures, 530 patients with EC were assigned to high- and low-risk subgroups. The prognostic capability of the eight-gene signature was not influenced by other elements. Conclusions: Eight related gene markers were identified using ImmuneScore, which could predict prognosis and survival in patients with EC. These findings provide a basis for understanding the application of biological information in tumors and identifying the poor prognosis of EC.

17.
Cell Death Dis ; 14(3): 177, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869031

RESUMO

Tumor stem cells (TSCs) are thought to contribute to the progression and maintenance of cancer. Previous studies have suggested that plasmacytoma variant translocation 1 (PVT1) has a tumor-promoting effect on endometrial cancer; however, its mechanism of action in endometrial cancer stem cells (ECSCs) is unknown. Here, we found that PVT1 was highly expressed in endometrial cancers and ECSCs, correlated with poor patient prognosis, promoted the malignant behavior and the stemness of endometrial cancer cells (ECCs) and ECSCs. In contrast, miR-136, which was lowly expressed in endometrial cancer and ECSCs, had the opposite effect, and knockdown miR-136 inhibited the anticancer effects of down-regulated PVT1. PVT1 affected miR-136 specifically binding the 3' UTR region of Sox2 by competitively "sponging" miR-136, thus positively saving Sox2. Sox2 promoted the malignant behavior and the stemness of ECCs and ECSCs, and overexpression Sox2 inhibited the anticancer effects of up-regulated miR-136. Sox2 can act as a transcription factor to positively regulate Up-frameshift protein 1 (UPF1) expression, thereby exerting a tumor-promoting effect on endometrial cancer. In nude mice, simultaneously downregulating PVT1 and upregulating miR-136 exerted the strongest antitumor effect. We demonstrate that the PVT1/miR-136/Sox2/UPF1 axis plays an important role in the progression and maintenance of endometrial cancer. The results suggest a novel target for endometrial cancer therapies.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Animais , Camundongos , Feminino , Humanos , Camundongos Nus , Regiões 3' não Traduzidas , Células-Tronco Neoplásicas , Fenótipo , Sinapsinas , Transativadores , RNA Helicases , Fatores de Transcrição SOXB1
18.
World J Gastrointest Endosc ; 15(2): 19-31, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36925647

RESUMO

Rectal neuroendocrine tumors (rNETs) measuring less than 10 mm in diameter are defined as small rNETs. Due to the low risk of distant invasion and metastasis, endoscopic treatments, including modified endoscopic mucosal resection, endoscopic submucosal dissection, and other transanal surgical procedures, are effective. This review article proposes a follow-up plan according to the size and histopathology of the tumor after operation.

19.
Am J Transl Res ; 15(1): 476-492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777835

RESUMO

The aim of this study was to build a prognostic model for endometrial cancer (EC) patients based on RNA-binding proteins (RBPs). RNA sequencing and clinical data for uterine corpus EC (UCEC) were obtained from The Cancer Genome Atlas (TCGA). Univariate and multivariate Cox regression analysis were used to obtain the following risk formula: score = sum (corresponding coefficient × expression of each gene). A nomogram was developed to accurately predict patient survival based on risk score, age, stage, and grade. Immunohistochemistry (IHC) was used to verify the expression of RBPs in EC. The mRNA expression of RBPs was measured by qRT-PCR. The effects of RBPs on the malignant biologic behavior of EC were detected using CCK-8, colony formation, and transwell invasion assays. A novel prognostic signature was constructed, comprising three RBPs (CD3EAP, SBDS, and TDRKH). The risk score was: Risk score = (0.860 × CD3EAP expression) + (0.622 × 6SBDS expression) + (0.427 × 4TDRKH expression). The area under the receiver operating characteristic curves (AUCs) of risk score for 1-, 3-, and 5-year overall survival (OS) was 0.75, 0.68, and 0.65, respectively. The AUCs of the nomogram for 1-, 3-, and 5-year OS were 0.811, 0.793, and 0.814, respectively. In our independent cohort, the IHC results revealed that CD3EAP (P < 0.001) and TDRKH (P < 0.001) were upregulated and SBDS (P < 0.001) was downregulated in EC. Immunostaining showed the expression levels of CD3EAP, SBDS and TDRKH for each patient and these were multiplied by their respective coefficients of 0.860, 0.622 and 0.427 to obtain the risk scores. The AUCs of risk score for 1-, 3-, and 5-year OS were 0.888, 0.793, and 0.780 respectively. The AUCs of the nomogram for 1-, 3-, and 5-year OS were 0.790, 0.826, and 0.906, respectively. Cell functional experiments also confirmed the influence of the key RBPs on the malignant biologic behavior of EC. In summary, a characteristic model based on our three RBPs accurately predicted the prognosis of EC. Our in-depth analysis of these RBPs may inform the development of novel strategies for the diagnosis and treatment of EC.

20.
Can J Cardiol ; 39(5): 593-604, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669686

RESUMO

BACKGROUND: Mineralocorticoid receptor (MR) antagonists have been widely used to treat heart failure (HF). Studies have shown that MR in T cells plays important roles in hypertension and myocardial hypertrophy. However, the function of T-cell MR in myocardial infarction (MI) has not been elucidated. METHODS: In this study, we used T-cell MR knockout (TMRKO) mouse to investigate the effects of T-cell MR deficiency on MI and to explore the underlying mechanisms. Echocardiography and tissue staining were used to assess cardiac function, fibrosis, and myocardial apoptosis after MI. Flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect immune cell infiltration and inflammation. RESULTS: T-cell MR deficiency significantly improved cardiac function, promoted myocardial repair, and inhibited myocardial apoptosis, fibrosis, and inflammation after MI. Luminex assays revealed that TMRKO mice had significantly lower levels of interferon-gamma (IFN-γ) and interleukin-6 (IL-6) in serum and infarcted myocardium than littermate control mice. In cultured splenic T cells, MR deficiency suppressed IL-6 expression, whereas MR overexpression enhanced IL-6 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that MR bound to the MR response element on the promoter of IL-6 gene. Finally, T-cell MR deficiency significantly suppressed accumulation of macrophages in infarcted myocardium and differentiation of proinflammatory macrophages, thereby alleviating the consequences of MI. CONCLUSIONS: T-cell MR deficiency improved pathologic ventricular remodelling after MI, likely through inhibition of accumulation and differentiation of proinflammatory macrophages. At the molecular level, MR may work through IFN-γ and IL-6 in T cells to exert functions in MI.


Assuntos
Interleucina-6 , Infarto do Miocárdio , Camundongos , Animais , Remodelação Ventricular , Receptores de Mineralocorticoides/genética , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Linfócitos T/metabolismo , Interferon gama , Fibrose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA