Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(29): e2313057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768957

RESUMO

Mott-Schottky construction and plasmon excitation represent two highly-efficient and closely-linked coping strategies to the high energy loss of oxygen evolution reaction (OER), but the combined effect has rarely been investigated. Herein, with Ag nanoparticles as electronic structure regulator and plasmon exciter, Ag/CoV-LDH@G nanohybrids (NHs) with Mott-Schottky heterojunction and notable plasmon effect are well-designed. Combining theoretical calculations with experiments, it is found that the Mott-Schottky construction modulates the Fermi level/energy band structure of CoV-LDH, which in turn leads to lowered d-band center (from -0.89 to -0.93), OER energy barrier (from 6.78 to 1.31 eV), and preeminent plasmon thermal/electronic effects. The thermal effect can offset the endothermic enthalpy change of OER, promote the deprotonation of *OOH, and accelerate electron transfer kinetics. Whereas the electronic effect can increase the density of charge carriers (from 0.70 × 1020 to 1.64 × 1020 cm-3), lower the activation energy of OER (from 30.3 to 17.7 kJ mol-1). Benefiting from these favorable factors, the Ag/CoV-LDH@G NHs show remarkable electrocatalytic performances, with an overpotential of 178 and 263 mV to afford 10 and 100 mA cm-2 for OER, respectively, and a low cell voltage of 1.42 V to drive 10 mA cm-2 for overall water splitting under near-infrared light irradiation.

2.
Angew Chem Int Ed Engl ; 62(41): e202310163, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639284

RESUMO

The rational design of advanced nanohybrids (NHs) with optimized interface electronic environment and rapid reaction kinetics is pivotal to electrocatalytic schedule. Herein, we developed a multiple heterogeneous Co9 S8 /Co3 S4 /Cu2 S nanoparticle in which Co3 S4 germinates between Co9 S8 and Cu2 S. Using high-angle annular-dark-field imaging and theoretical calculation, it was found that the integration of Co9 S8 and Cu2 S tends to trigger the interface phase transition of Co9 S8 , leading to Co3 S4 interlayer due to the low formation energy of Co3 S4 /Cu2 S (-7.61 eV) than Co9 S8 /Cu2 S (-5.86 eV). Such phase transition not only lowers the energy barrier of oxygen evolution reaction (OER, from 0.335 eV to 0.297 eV), but also increases charge carrier density (from 7.76×1014 to 2.09×1015  cm-3 ), and creates more active sites. Compared to Co9 S8 and Cu2 S, the Co9 S8 /Co3 S4 /Cu2 S NHs also demonstrate notable photothermal effect that can heat the catalyst locally, offset the endothermic enthalpy change of OER, and promote carrier migrate, reaction intermediates adsorption/deprotonation to improve reaction kinetics. Profiting from these favorable factors, the Co9 S8 /Co3 S4 /Cu2 S catalyst only requires an OER overpotential of 181 mV and overall water splitting cell voltage of 1.43 V to driven 10 mA cm-2 under the irradiation of near-infrared light, outperforming those without light irradiation and many reported Co-based catalysts.

3.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395388

RESUMO

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/metabolismo , RNA/genética
4.
Chem Commun (Camb) ; 59(16): 2267-2270, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734356

RESUMO

This work reports an atomic-scale carbon layer configuration tuning strategy induced by a boron dopant. Through regulating the doping level of boron, it was found that the boron dopant not only favors carbon layer growth by strengthening the metallic state of the Ni core, but also enhances the abundance of pyrrolic N species and graphitization degree of carbon by tailoring the carbon/nitrogen atom configuration, thereby contributing to more active pyrrolic N/carbon sites and accelerated interface reaction dynamics. Consequently, the developed Ni@B,N-C catalyst achieves remarkable electrochemical H2O2 production performances with a high selectivity of 95.5% and a yield of 795 mmol g-1 h-1. In comparison with previous reports in which the boron dopant mainly acts as an electronic structure regulator, this study reveals the tuning effect of boron dopants on the atomic-scale carbon layer configuration, opening up a new avenue for the development of advanced catalysts.

5.
Front Pharmacol ; 11: 616101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391000

RESUMO

Oral cancers refer to malignant tumors associated with high morbidity and mortality, and oral squamous cell carcinoma accounts for the majority of cases. It is an important part of head and neck, and oral cancer is one of the six most common cancers in the world. At present, the traditional treatment methods for oral cancer include surgery, radiation therapy, and chemotherapy. However, these methods have many disadvantages. In recent years, nanomedicine, the delivery of drugs through nanoplatforms for the treatment of cancer, has become a promising substitutive therapy. The use of nanoplatforms can reduce the degradation of the drug in the body and accurately deliver it to the tumor site. This minimizes the distribution of the drug to other organs, thereby reducing its toxicity and allowing higher drug concentration at the tumor site. This review introduces polymer nanoparticles, lipid-based nanoparticles, metal nanoparticles, hydrogels, exosomes, and dendrimers for the treatment of oral cancer, and discusses how these nanoplatforms play an anti-cancer effect. Finally, the review gives a slight outlook on the future prospects of nanoplatforms for oral cancer treatment.

6.
Front Bioeng Biotechnol ; 8: 620537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392178

RESUMO

Polyether ether ketone (PEEK) is a non-toxic polymer with elastic modulus close to human bone. Compared with metal implants, PEEK has advantages such as evasion of stress shielding effect, easy processing, and similar color as teeth, among others. Therefore, it is an excellent substitute material for titanium dental orthopedic implants. However, PEEK's biological inertia limits its use as an implant. To change PEEK's biological inertia and increase its binding ability with bone tissue as an implant, researchers have explored a number of modification methods to enhance PEEK's biological activities such as cellular compatibility, osteogenic activity, and antibacterial activity. This review summarizes current biological activity modification methods for PEEK, including surface modification and blending modification, and analyzes the advantages and disadvantages of each modification method. We believe that modified PEEK will be a promising dental and orthopedic implant material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA