Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 59(2-3): 160-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12111141

RESUMO

The thermophilic Bacillus strain BS119 was selected for this study to demonstrate the long term performance of lactic acid production and simultaneous pre-purification. Integrated continuous cell recycle cultivation using ultra-filtration membrane bioreactor (MBR) systems was investigated. The permeate from the MBR was routed to an on-line electrodialysis (ED) to recover, pre-purify and concentrate lactate. The cultivation and ED was operated at 60 degrees C for more than 1,000 h at a pH of 6.5. At lower dilution rate (0.02 h(-1)), lactate concentration reached a maximum of 55 g l(-1) with clearly lower residual glucose levels. At 0.04 h(-1), lactate concentration was significantly lower at 35 g l(-1). Maximal volumetric productivities of 1.38 g l(-1) h(-1) were achieved. Under stable conditions, lactic acid yield on consumed glucose appeared stable at around 80%. It could be demonstrated that the addition of supplements like yeast extract and peptone severely influences product formation. Integration of mono-polar ED with the MBR systems yields lactate solutions with concentrations of up to 115 g l(-1). Because of the low substrate feed concentrations (less than 50 g l(-1)), lactate flux was rather poor, reaching a low maximum of 140 g m(-2) h(-1); nevertheless, stack energy consumption was positive with an average of 0.49 kWh kg(-1) lactate.


Assuntos
Bacillus/metabolismo , Reatores Biológicos , Ácido Láctico/biossíntese , Biomassa , Diálise , Fermentação
2.
J Biotechnol ; 96(3): 223-39, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12044551

RESUMO

Cell free sodium lactate solutions were subjected to purification based on mono- and bi-polar electrodialysis. Lactate concentration in the product stream increased to a maximum of 15% during mono-polar electrodialysis. Stack energy consumption averaged 0.6 kW h kg(-1) lactate transported at current efficiencies in the 90% range. Under optimum feed concentration (125 g l(-1)) and process conditions (auto-current mode with conductivity setpoints of minimum 5 and maximum 40 mS cm(-1)), lactate flux reached 300 g m(-2) h(-1) and water flux were low for mono-polar electrodialysis averaging 0.3 kg H(2)O per M lactate transported. Glucose in the concentrate stream solutions was reduced to < 2 g l(-1). Acetate impurities enriched from about 0.5 g l(-1) in the feed stream to 1.5 g l(-1) in the concentrate stream solutions. After mono-polar electrodialysis, the concentrated sodium lactate solutions were further purified using bi-polar electrodialysis. Water transport during bi-polar electrodialysis reached figures of 0.070 - 0.222 kg H(2)O per M lactate. Free lactic acid concentration reached 16% with lactate flux of up to 300 g m(-2) h(-1). Stack energy consumption ranged from 0.6 to 1 kW h per kg lactate. Under optimised process conditions current efficiency during bi-polar electrodialysis was consistently around 90%. Glucose was further reduced from 2 to <1 g l(-1) in the free lactic acid solution. Acetic acid impurity remained at around 1 g l(-1). Significant reduction in colour and minerals in the product streams was observed during electrodialysis purification.


Assuntos
Diálise/métodos , Eletroquímica/métodos , Ácido Láctico/isolamento & purificação , Reatores Biológicos , Fermentação , Ácido Láctico/análise , Modelos Anatômicos , Lactato de Sódio/isolamento & purificação , Água/química
3.
Appl Biochem Biotechnol ; 70-72: 895-903, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-18576053

RESUMO

A process for the continuous production of high purity L-lactic acid in a membrane bioreactor at 65 degrees C has been developed. Two different Bacillus stearothermophilus strains have been tested in batch experiments. Lactic acid yields are between 60 and more than 95% of theoretical yields. The amounts of ethanol, acetate, and formate formed varied between 0 and 0.4, 0 and 0.1, and 0 and 0.5, respectively (mol/mol glucose). All byproducts are valuable and may be separated easily by rectification of the fermentation broth. Complete cell retention enables high volumetric productivity (5 g/Lh), and a minimum of growth supplements. The high temperature of 65 degrees C allows the autoselective fermentation without problems with contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA