Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Org Chem ; 87(24): 16390-16398, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441970

RESUMO

The Ir(III)-catalyzed ortho-C-H amidation of 2-aroylimidazole derivatives with 2,2,2-trichloroethyl azide (TrocN3) as an amidating reagent is reported. The reaction proceeds smoothly, even at room temperature, and various important functional groups are tolerated. The results of deuterium-labeling experiments indicate that C-H bond cleavage is irreversible and does not appear to be the rate-determining step. The presence of an electron-donating group on the phenyl ring in the 2-aroylimidazole results in a dramatic acceleration in the reaction.

3.
J Org Chem ; 87(12): 8183-8193, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35666267

RESUMO

The Ir(III)-catalyzed ortho C-H amidation of 2-aroylimidazoles with 3-aryldioxazolones as an amidating reagent is reported. The method provides a broad substrate scope with wide functional group compatibility. Mechanistic studies indicate that C-H bond cleavage is reversible and appears not to be the rate-determining step. The presence of an electron-donating group in the 2-aroylimidazoles and an electron-withdrawing group in the 3-aryldioxazoles significantly accelerates the reaction, suggesting that nitrene insertion is the rate-determining step.

4.
ACS Omega ; 5(6): 2503-2519, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095675

RESUMO

This review deals with the recent applications of the indium trichloride (InCl3) catalyst in the synthesis of a broad spectrum of heterocyclic compounds. Over the years, a number of reviews on the applications of InCl3-catalyzed organic synthesis have appeared in the literature. It is evident that InCl3 has emerged as a valuable catalyst for a wide range of organic transformations due to its stability when exposed to moisture and also in an aqueous medium. The most attractive feature of this review is the application of the InCl3 catalyst for synthesizing bioactive heterocyclic compounds. The study of InCl3-catalyzed organic reactions has high potential and better intriguing aspects, which are anticipated to originate from this field of research.

5.
Anticancer Drugs ; 30(2): 167-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418193

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of cytokine superfamily, induces apoptosis in a number of tumor cells through the activation of extrinsic apoptotic pathway but shows little or no cytotoxicity toward normal cells. However some tumor cells are inherently resistant to TRAIL-mediated apoptosis, which needs to be addressed to establish TRAIL as a potential chemotherapeutic drug. In this study, our aim was to manipulate TRAIL-apoptosis pathway by hydroxychavicol (HCH), a polyphenol from Piper betel leaf, for the induction of apoptosis in TRAIL resistant chronic myeloid leukemia cell. When imatinib-resistant K562 cells were treated with HCH, it made these K562 cells sensitive to TRAIL. It was observed that HCH downregulated antiapoptotic proteins XIAP and FLIP, whereas the expression of TRAIL receptors, DR4 and DR5, remains unchanged. Moreover, we observed that reactive oxygen species or ROS played a crucial role in the downregulation of FLIP and XIAP because ROS scavenger significantly reversed the decrease of XIAP, and FLIP. Ubiquitin-proteasome pathway was observed to play a crucial role in the downregulation of XIAP and FLIP, as proteasomal inhibitor MG132 significantly reversed the downregulation of XIAP and FLIP. In conclusion, this study demonstrates the combinatorial treatment of TRAIL and HCH as promising alternative therapeutic approach to treat the imatinib-resistant leukemia, which are also resistant to TRAIL.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eugenol/análogos & derivados , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Regulação para Baixo , Sinergismo Farmacológico , Eugenol/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
6.
PLoS One ; 8(9): e73672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040019

RESUMO

BACKGROUND: Hydroxychavicol (HCH), a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS). The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML) cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO) with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4), non-leukemic (A549, MIA-PaCa2, PC-3, HepG2) cancer cell lines and normal cell lines (NIH3T3, Vero) was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM) after staining with annexin V-FITC/propidium iodide (PI), detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP)-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF) by confocal microscopy. Intracellular reduced glutathione (GSH) was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) were used as probes to measure intracellular increase in ROS and nitric oxide (NO) levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF)-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the expression of inducible nitric oxide synthase (iNOS). iNOS- mediated production of NO was identified as an effector molecule causing apoptosis of CML cells. CONCLUSION/SIGNIFICANCE: BSO synergizes with HCH in inducing apoptosis of CML cells through the GSH-ROS-JNK-ERK-iNOS pathway.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Eugenol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Eugenol/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutationa/metabolismo , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Microscopia Confocal , Células NIH 3T3 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células U937 , Células Vero
7.
Apoptosis ; 17(6): 612-26, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22252531

RESUMO

The role of c-Jun N terminal Kinase (JNK) has been well documented in various cellular stresses where it leads to cell death. Similarly, extracellular signal-regulated kinase (ERK) which was identified as a signalling molecule for survival pathway has been shown recently to be involved in apoptosis also. Recently we reported that ICB3E, a synthetic analogue of Piper betle leaf-derived apoptosis-inducing agent hydroxychavicol (HCH), possesses anti-chronic myeloid leukemia (CML) acitivity in vitro and in vivo without insight on mechanism of action. Here we report that ICB3E is three to four times more potent than HCH in inducing apoptosis of leukemic cells without having appreciable effects on normal human peripheral blood mononuclear cells, mouse fibroblast cell line NIH3T3 and monkey kidney epithelial cell line Vero. ICB3E causes early accumulation of mitochondria-derived reactive oxygen species (ROS) in K562 cells. Unlike HCH, ICB3E treatment caused ROS dependent activation of both JNK, ERK and induced the expression of iNOS leading to generation of nitric oxide (NO). This causes cleavage of caspase 9, 3 and PARP leading to apoptosis. Lack of cleavage of caspase 8 and inability of blocking chimera antibody to DR5 or neutralizing antibody to Fas to reverse ICB3E-mediated apoptosis suggest the involvement of only intrinsic pathway. Our data reveal a novel ROS-dependent JNK/ERK-mediated iNOS activation pathway which leads to NO mediated cell death by ICB3E.


Assuntos
Acetatos/farmacologia , Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/fisiopatologia , Camundongos , Células NIH 3T3 , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/efeitos dos fármacos
8.
Cancer Sci ; 103(1): 88-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21943109

RESUMO

Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eugenol/análogos & derivados , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Piper betle/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas , Western Blotting , Eugenol/química , Eugenol/farmacologia , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Camundongos SCID , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pirimidinas/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA