Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36977048

RESUMO

Cerium oxide engineered nanoparticles (nCeO2) are widely used in various applications and are, also, increasingly being detected in different environmental matrixes. However, their impacts on the aquatic environment remain poorly quantified. Hence, there is a need to investigate their effects on non-target aquatic organisms. Here, we evaluated the cytotoxic and genotoxic effects of <25 nm uncoated-nCeO2 on algae Pseudokirchneriella subcapitata. Apical (growth and chlorophyll a (Chl a) content) and genotoxic effects were investigated at 62.5-1000 µg/L after 72 and 168 h. Results demonstrated that nCeO2 induced significant growth inhibition after 72 h and promotion post 96-168 h. Conversely, nCeO2 induced enhanced Chl a content post 72 h, but no significant changes were observed between nCeO2-exposed and control samples after 168 h. Hence, the results indicate P. subcapitata photosynthetic system recovery ability to nCeO2 effects under chronic-exposure conditions. RAPD-PCR profiles showed the appearance and/or disappearance of normal bands relative to controls; indicative of DNA damage and/or DNA mutation. Unlike cell recovery observed post 96 h, DNA damage persisted over 168 h. Thus, sub-lethal nCeO2-induced toxicological effects may pose a more serious threat to algae than at present anticipated.

2.
Toxics ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36006102

RESUMO

Antiretroviral (ARVs) drugs are used to manage the human immunodeficiency virus (HIV) disease and are increasingly being detected in the aquatic environment. However, little is known about their effects on non-target aquatic organisms. Here, Daphnia magna neonates were exposed to Efavirenz (EFV) and Tenofovir (TFV) ARVs at 62.5-1000 µg/L for 48 h in river water. The endpoints assessed were mortality, immobilization, and biochemical biomarkers (catalase (CAT), glutathione S-transferase (GST), and malondialdehyde (MDA)). No mortality was observed over 48 h. Concentration- and time-dependent immobilization was observed for both ARVs only at 250-1000 µg/L after 48 h, with significant immobilization observed for EFV compared to TFV. Results for biochemical responses demonstrated that both ARVs induced significant changes in CAT and GST activities, and MDA levels, with effects higher for EFV compared to TFV. Biochemical responses were indicative of oxidative stress alterations. Hence, both ARVs could potentially be toxic to D. magna.

3.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34947527

RESUMO

The study investigated the interactions of coated-gold engineered nanoparticles (nAu) with the aquatic higher plant Salvinia minima Baker in 2,7, and 14 d. Herein, the nAu concentration of 1000 µg/L was used; as in lower concentrations, analytical limitations persisted but >1000 µg/L were deemed too high and unlikely to be present in the environment. Exposure of S. minima to 1000 µg/L of citrate (cit)- and branched polyethyleneimine (BPEI)-coated nAu (5, 20, and 40 nm) in 10% Hoagland's medium (10 HM) had marginal effect on biomass and growth rate irrespective of nAu size, coating type, or exposure duration. Further, results demonstrated that nAu were adsorbed on the plants' roots irrespective of their size or coating variant; however, no evidence of internalization was apparent, and this was attributed to high agglomeration of nAu in 10 HM. Hence, adsorption was concluded as the basic mechanism of nAu accumulation by S. minima. Overall, the long-term exposure of S. minima to nAu did not inhibit plant biomass and growth rate but agglomerates on plant roots may block cell wall pores, and, in turn, alter uptake of essential macronutrients in plants, thus potentially affecting the overall ecological function.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34769808

RESUMO

The recent outbreak of respiratory syndrome-coronavirus-2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), has led to the widespread use of therapeutics, including dexamethasone (DEXA). DEXA, a synthetic glucocorticoid, is among the widely administered drugs used to treat hospitalized COVID-19 patients. The global COVID-19 surge in infections, consequent increasing hospitalizations, and other DEXA applications have raised concerns on eminent adverse ecological implications to aquatic ecosystems. Here, we aim to summarize published studies on DEXA occurrence, fate, and effects on organisms in natural and engineered systems as, pre-COVID, the drug has been identified as an emerging environmental contaminant. The results demonstrated a significant reduction of DEXA in wastewater treatment plants, with a small portion, including its transformation products (TPs), being released into downstream waters. Fish and crustaceans are the most susceptible species to DEXA exposure in the parts-per-billion range, suggesting potential deleterious ecological effects. However, there are data deficits on the implications of DEXA to marine and estuarine systems and wildlife. To improve DEXA management, toxicological outcomes of DEXA and formed TPs should entail long-term studies from whole organisms to molecular effects in actual environmental matrices and at realistic exposure concentrations. This can aid in striking a fine balance of saving human lives and protecting ecological integrity.


Assuntos
Tratamento Farmacológico da COVID-19 , Ecossistema , Animais , Dexametasona , Humanos , SARS-CoV-2
5.
Aquat Toxicol ; 236: 105865, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034204

RESUMO

Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.


Assuntos
Clorofíceas/fisiologia , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Clorofila A , Dano ao DNA , Ecossistema , Água Doce , Ouro , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA