Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176484

RESUMO

Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.

2.
Materials (Basel) ; 16(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614775

RESUMO

A silver sulfide (Ag2S) semiconductor photocatalyst film has been successfully synthesized using a solution casting method. To produce the photocatalyst films, two types of Ag2S powder were used: a commercialized and synthesized powder. For the commercialized powder (CF/comAg2S), the Ag2S underwent a rarefaction process to reduce its crystallite size from 52 nm to 10 nm, followed by incorporation into microcrystalline cellulose using a solution casting method under the presence of an alkaline/urea solution. A similar process was applied to the synthesized Ag2S powder (CF/syntAg2S), resulting from the co-precipitation process of silver nitrate (AgNO3) and thiourea. The prepared photocatalyst films and their photocatalytic efficiency were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy (UV-Vis). The results showed that the incorporation of the Ag2S powder into the cellulose films could reduce the peak intensity of the oxygen-containing functional group, which indicated the formation of a composite film. The study of the crystal structure confirmed that all of the as-prepared samples featured a monoclinic acanthite Ag2S structure with space group P21/C. It was found that the degradation rate of the methylene blue dye reached 100% within 2 h under sunlight exposure when using CF/comAg2S and 98.6% for the CF/syntAg2S photocatalyst film, and only 48.1% for the bare Ag2S powder. For the non-exposure sunlight samples, the degradation rate of only 33-35% indicated the importance of the semiconductor near-infrared (NIR) Ag2S photocatalyst used.

3.
Materials (Basel) ; 14(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567696

RESUMO

This paper details analytical research results into a novel geopolymer concrete embedded with glass bubble as its thermal insulating material, fly ash as its precursor material, and a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as its alkaline activator to form a geopolymer system. The workability, density, compressive strength (per curing days), and water absorption of the sample loaded at 10% glass bubble (loading level determined to satisfy the minimum strength requirement of a load-bearing structure) were 70 mm, 2165 kg/m3, 52.58 MPa (28 days), 54.92 MPa (60 days), and 65.25 MPa (90 days), and 3.73 %, respectively. The thermal conductivity for geopolymer concrete decreased from 1.47 to 1.19 W/mK, while the thermal diffusivity decreased from 1.88 to 1.02 mm2/s due to increased specific heat from 0.96 to 1.73 MJ/m3K. The improved physicomechanical and thermal (insulating) properties resulting from embedding a glass bubble as an insulating material into geopolymer concrete resulted in a viable composite for use in the construction industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA