Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(34): 15973-15983, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39140114

RESUMO

Radioactive iodine isotopes from nuclear-related activities, present substantial risks to human health and the environment. Developing effective materials for the capture and storage of these hazardous molecules is paramount. Traditionally, nonporous solids were historically considered ineffective for adsorbing target species. In this study, we investigate the potential of four nonporous, amorphous, self-assembled coordination cages (C1, C2, C3, and C4) featuring varying numbers of nitrogen atoms within the core (pyridyl/triazine unit) and specific cavity sizes for iodine adsorption. These coordination cages demonstrate remarkable adsorption abilities for iodine in both vapor and solution phases, facilitated by enhanced electron-pair interactions. The cages exhibit high uptake capacities of up to 3.16 g g-1 at 75 °C, the highest among metal-organic cages and up to 434.29 mg g-1 in solution, highlighting the efficiency of these materials across different phases. Even at ambient temperature, they show significant iodine capture efficiency, with a maximum value of 1.5 g g-1. Furthermore, these robust materials can be recycled, enduring at least five reusable cycles without apparent fatigue. Overall, our findings present a "N-heteroatom engineering" approach for the development of recyclable amorphous containers for the capture and storage of iodine, contributing to the mitigation of nuclear-related risks.

2.
Chemistry ; 30(38): e202401013, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38700019

RESUMO

The dynamic interplay of coordination bonds within metal-organic cages offers a unique avenue for structural evolution in response to external stimuli, presenting a promising strategy for the construction of chiral assemblies. This adaptability is crucial for the selective synthesis of homochiral assemblies and advancement of asymmetric catalysis. In this study, we report the self-assembly of an achiral square-planar Pd(II) acceptor with a C2-symmetric tetrapyridyl donor resulted in the formation of a racemic mixture of the chiral octahedral cage Pd4L2. The existence of this racemic mixture was confirmed using circular dichroism spectroscopy as well as single crystal X-ray diffraction analysis. We encoded chiral information into the asymmetric cavity of the cage by encapsulating chiral aromatic guests through efficient π-π stacking and hydrophobic interactions in aqueous media. The inclusion of a chiral guest induces a preference for one enantiomeric conformation of the cage over the other, effectively shifting the equilibrium towards a single, enantiopure host-guest complex. While the concept of chiral guest recognition by a chiral host is well-established, this work constitutes a remarkable example of guest-mediated chirality transfer leading to the formation of a single enantiopure coordination complex from achiral building blocks.

3.
Chemistry ; 30(35): e202400328, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38646974

RESUMO

The chemically triggered reversible switching of pH-responsive hydrazones involves rotary motion-induced configurational changes, serving as a prototype for constructing an array of molecular machines. Typically, the configurational isomerization of such switches into two distinct forms (E/Z) occurs through the alteration of the pH the medium, achieved by successive additions of acid and base stimuli. However, this process results in intermittent operation due to the concomitant accumulation of salt after each cycle, limiting switching performance to only a few cycles (5-6). In this context, we introduce a novel strategy for the autonomous E/Z isomerization of hydrazones in acetonitrile using pulses of trichloroacetic acid as a chemical fuel. The use of this transient acid enabled reversible switching of hydrazones even after 50 cycles without causing significant fatigue. To test the broad viability of the fuel, a series of ortho/para-substituted hydrazones were synthesized and their switching performance was investigated. The analysis of kinetic data showed a strong dependency of switching operations including the lifetime of transient state, on the electronic properties of substituents. Finally, a distinct color change from yellow to orange due to reversible switching of the para-methoxy substituted hydrazone was employed for the creation of rewritable messages on commercially available paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA