Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35743727

RESUMO

Ventricular arrhythmia (VA) is a leading cause of sudden death and health deterioration. Recent advances in predictive analytics and wearable technology for behavior assessment show promise but require further investigation. Yet, previous studies have only assessed other health outcomes and monitored patients for short durations (7−14 days). This study explores how behaviors reported by a consumer wearable can assist VA risk prediction. An exploratory observational study was conducted with participants who had an implantable cardioverter-defibrillator (ICD) and wore a Fitbit Alta HR consumer wearable. Fitbit reported behavioral markers for physical activity (light, fair, vigorous), sleep, and heart rate. A case-crossover analysis using conditional logistic regression assessed the effects of time-adjusted behaviors over 1−8 weeks on VA incidence. Twenty-seven patients (25 males, median age 59 years) were included. Among the participants, ICDs recorded 262 VA events during 8093 days monitored by Fitbit (median follow-up period 960 days). Longer light to fair activity durations and a higher heart rate increased the odds of a VA event (p < 0.001). In contrast, lengthier fair to vigorous activity and sleep durations decreased the odds of a VA event (p < 0.001). Future studies using consumer wearables in a larger population should prioritize these outcomes to further assess VA risk.

2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799449

RESUMO

It is well established that mantle plumes are the main conduits for upwelling geochemically enriched material from Earth's deep interior. The fashion and extent to which lateral flow processes at shallow depths may disperse enriched mantle material far (>1,000 km) from vertical plume conduits, however, remain poorly constrained. Here, we report He and C isotope data from 65 hydrothermal fluids from the southern Central America Margin (CAM) which reveal strikingly high 3He/4He (up to 8.9RA) in low-temperature (≤50 °C) geothermal springs of central Panama that are not associated with active volcanism. Following radiogenic correction, these data imply a mantle source 3He/4He >10.3RA (and potentially up to 26RA, similar to Galápagos hotspot lavas) markedly greater than the upper mantle range (8 ± 1RA). Lava geochemistry (Pb isotopes, Nb/U, and Ce/Pb) and geophysical constraints show that high 3He/4He values in central Panama are likely derived from the infiltration of a Galápagos plume-like mantle through a slab window that opened ∼8 Mya. Two potential transport mechanisms can explain the connection between the Galápagos plume and the slab window: 1) sublithospheric transport of Galápagos plume material channeled by lithosphere thinning along the Panama Fracture Zone or 2) active upwelling of Galápagos plume material blown by a "mantle wind" toward the CAM. We present a model of global mantle flow that supports the second mechanism, whereby most of the eastward transport of Galápagos plume material occurs in the shallow asthenosphere. These findings underscore the potential for lateral mantle flow to transport mantle geochemical heterogeneities thousands of kilometers away from plume conduits.

3.
Sci Rep ; 11(1): 12091, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103630

RESUMO

Salt diapirism is often associated with potential hydrocarbon energy resources, and detecting active diapirs can strongly affect the prospect to discover new gas and oilfields. Here we use InSAR techniques as a proxy to evaluate surface deformation in the Diapiric Fold Zone located in the East Carpathians Bend. Significant surface uplift (~ 5 mm/year) is identified in a relatively small region not previously known for the presence of an actively rising salt diapir. Using high-resolution two-dimensional thermomechanical numerical simulations of salt diapirs intrusions, we show that that the observed surface deformation can be induced by a relatively small salt diapir (1-2 km in diameter) rising from an initial salt layer located at < 7 km depth. We constrain the salt diapir viscosity by comparing the InSAR surface deformation pattern with results from numerical simulations and our best fitting model is obtained for a salt viscosity of 1 × 1017 Pa s. The best fitting model reveals the presence of a relatively small salt diapir that has not pierced yet the entire sedimentary layer and is located just 1-2 km below the surface.

4.
J Pers Med ; 10(4)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142665

RESUMO

Inactivity, lack of sleep, and poor nutrition predispose individuals to health risks. Patient-Reported Outcomes (PROs) assess physical behaviours and psychological states but are subject of self-reporting biases. Conversely, wearables are an increasingly accurate source of behavioural Technology-Reported Outcomes (TechROs). However, the extent to which PROs and TechROs provide convergent information is unknown. We propose the coQoL PRO-TechRO co-calibration method and report its feasibility, reliability, and human factors influencing data quality. Thirty-nine seniors provided 7.4 ± 4.4 PROs for physical activity (IPAQ), social support (MSPSS), anxiety/depression (GADS), nutrition (PREDIMED, SelfMNA), memory (MFE), sleep (PSQI), Quality of Life (EQ-5D-3L), and 295 ± 238 days of TechROs (Fitbit Charge 2) along two years. We co-calibrated PROs and TechROs by Spearman rank and reported human factors guiding coQoL use. We report high PRO-TechRO correlations (rS≥ 0.8) for physical activity (moderate domestic activity-light+fair active duration), social support (family help-fair activity), anxiety/depression (numeric score-sleep duration), or sleep (duration to sleep-sleep duration) at various durations (7-120 days). coQoL feasibly co-calibrates constructs within physical behaviours and psychological states in seniors. Our results can inform designs of longitudinal observations and, whenever appropriate, personalized behavioural interventions.

5.
Sci Rep ; 7(1): 16864, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203901

RESUMO

Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab.

6.
Nat Commun ; 5: 5095, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25342158

RESUMO

For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA