Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 260(4): 1135-1147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36635609

RESUMO

The presence of mucilage cells in plants, studied mainly in vegetative organs, is a condition shared by several taxonomic groups and aspects related to their diversity have been discussed with systematic purposes. This study explores the flower distribution and classification of mucilage cells in Rosales species, with inferences about flower functions. Floral buds from fifty-seven species representing seven of nine families recognized in the Rosales were sampled and processed for light and transmission electron microscopy. Mucilage cells were found in about 40% of the studied species of Cannabaceae, Rhamnaceae, Ulmaceae, and Urticaceae families, whereas no floral mucilage cells were found in species of Elaeagnaceae, Moraceae, and Rosaceae. Mucilage cells were found in the epidermis and internal tissues of many organs of different floral morph types. There is a great diversity of forms of presentation of mucilage in cells, from smaller individualized single cells to very bulky cells and to completely filled mucilage reservoirs. In some cases, cells with mucilage apparently in the cell wall and others with mucilage in the vacuole seem to occur side by side. This diversity challenges the existing classifications of mucilage cells and reinforces the importance of ontogenetic and ultrastructural studies following the path of mucilage in cells in order to propose a more natural classification and to elucidate the evolution of mucilage cells in plants.


Assuntos
Cannabaceae , Mucilagem Vegetal , Rosales , Humanos , Flores/ultraestrutura , Polissacarídeos , Microscopia Eletrônica de Transmissão
2.
Protoplasma ; 257(4): 1183-1199, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32212022

RESUMO

Cannabaceae is a known family because of the production of cannabinoids in laticifers and glandular trichomes of Cannabis sativa. Laticifers are latex-secreting structures, which in Cannabaceae were identified only in C. sativa and Humulus lupulus. This study aimed to expand the knowledge of laticifers in Cannabaceae by checking their structural type and distribution, and the main classes of substances in the latex of Celtis pubescens, Pteroceltis tatarinowii, and Trema micrantha. Such information is also updated for C. sativa. Samples of shoot apices, stems, leaves, and flowers were processed for anatomical, histochemical, ultrastructural, and cytochemical analyses. Laticifers are articulated unbranched in all species instead of non-articulated as previously described for the family. They occur in all sampled organs. They are thick-walled, multinucleate, with a large vacuole and a peripheral cytoplasm. The cytoplasm is rich in mitochondria, endoplasmic reticulum, dictyosomes, ribosomes, and plastids containing starch grains and oil drops. Pectinase and cellulase activities were detected in the laticifer wall and vacuole, confirming its articulated origin, described by first time in the family. These enzymes promote the complete dissolution of the laticifer terminal walls. The latex contains proteins, lipids, and polysaccharides in addition to phenolics (C. sativa) and terpenes (C. pubescens, T. micrantha). The presence of laticifers with similar distribution and morphology supports the recent insertion of Celtis, Pteroceltis, and Trema in Cannabaceae. The articulated type of laticifer found in Cannabaceae, Moraceae, and Urticaceae indicates that the separation of these families by having distinct laticifer types should be reviewed.


Assuntos
Cannabaceae/química , Látex/química , Folhas de Planta/química
3.
Protoplasma ; 256(4): 1093-1107, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927084

RESUMO

The presence of articulated laticifers in the Moraceae family was recently discovered, which means that the location of pectinase and cellulase activities must be of great importance for their growth. Thus, the present study aimed to determine the role of these enzymes in the laticifer growth in Ficus montana and Maclura tinctoria. Reproductive meristems were collected and fixed in Karnovsky. Pectinase and cellulase labeling was performed in part of the samples, while another part was processed for usual TEM analyses. Pectinase and cellulase activities were detected in the vacuole and close to the middle lamella in both species. The presence of cellulases in the laticifers supports their articulated origin. Therefore, the occurrence of pectinase and cellulase activity in the laticifers points out that these enzymes could act in the dissolution of the transverse walls and in the processes of intrusive growth (through the dissolution of the middle lamella) and cell elongation (through the partial disassembly of components of the wall making it more plastic). Both enzymes are synthesized in the endoplasmic reticulum and transported to the cell wall by exocytosis or stored in the vacuole. The species studied showed a diverse subcellular composition, which is probably related to the species and not to the laticifer type (they present the same type) and to the composition of the latex (they show similar latex composition). We conclude that the presence of pectinases and cellulases can be used as a diagnostic condition for the laticifer types (articulated vs. non-articulated).


Assuntos
Celulases/metabolismo , Ficus/metabolismo , Maclura/metabolismo , Poligalacturonase/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Ficus/citologia , Látex/metabolismo , Maclura/citologia , Meristema/metabolismo , Microscopia Eletrônica de Transmissão , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...