Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202413701, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318227

RESUMO

Precise hydrogen sorting from purge gas (H2/N2) and coke gas (H2/CH4), commonly carried out by cryogenic distillation, still suffers from low separation efficiency, high energy consumption, and considerable capital cost. Though still in its infancy, membrane technology offers a potential to achieve more efficient hydrogen purification. In this study, an optimum separation of hydrogen towards both methane and nitrogen via a kinetically-driven mechanism is realized through preferred orientation control of a MOF membrane. Relying on the 0.3 nm-sized window aligned vertical to the substrate, b-oriented Ti-MOF membrane exhibits ultra-high hydrogen selectivity, surpassing the upper bound limit of separating H2/N2 and H2/CH4 gas pairs attained so far by inorganic membranes. This spectacular selectivity is combined with a high H2 permeability owing to the synergistic effect of the 1 nm-sized MOF channel.

2.
Chem Sci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39246361

RESUMO

Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, e.g. production of chemical fuels via oxygen evolution (OER) and CO2 reduction (CO2RR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, i.e. poly-heptazine imides (PHI) are appealing CO2RR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CO2RR/OER catalysis. Along this path, understanding of the photophysical processes controlling the MOF/PHI interfacial charge recombination is vital to fine tune the electronic and chemical features of the two components and devise the optimum heterojunction. To address this challenge, we developed a modelling approach integrating force field Molecular Dynamics (MD), Time-Dependent Density Functional Theory (TD-DFT) and Non-Equilibrium Green Function DFT (NEGF-DFT) tools with the aim of systematically exploring the structuring, the opto-electronic and transport properties of MOF/PHI heterojunctions. We revealed that the nature of the MOF/PHI interactions, the interfacial charge transfer directionality and the absorption energy windows of the resulting heterojunctions can be fine tuned by incorporating Cu species in the MOF and/or doping PHI with mono- or divalent cations. Interestingly, we demonstrated that the interfacial charge transfer can be further boosted by engineering MOF/PHI device junctions and application of negative bias. Overall, our generalizable computational methodology unravelled that the performance of CO2RR/OER photoreactors can be optimized by chemical and electronic tuning of the components but also by device design based on reliable structure-property rules, paving the way towards practical exploitation.

3.
Small ; : e2405649, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263810

RESUMO

Nitric oxide (NO), a key element in the regulation of essential biological mechanisms, presents huge potential as therapeutic agent in the treatment and prevention of chronic diseases. Metal-organic frameworks (MOFs) with open metal sites are promising carriers for NO therapies but delivering it over an extended period in biological media remains a great challenge due to i) a fast degradation of the material in body fluids and/or ii) a rapid replacement of NO by water molecules onto the Lewis acid sites. Here, a new ultra-narrow pores Fe bisphosphonate MOF, denoted MIP-210(Fe) or Fe(H2O)(Hmbpa) (H4mbpa = p-xylenediphosphonic acid) is described that adsorbs NO due to an unprecedented sorption mechanism: coordination of NO through the Fe(III) sites is unusually preferred, replacing bound water, and creating a stable interaction with the free H2O and P-OH groups delimiting the ultra-narrow pores. This, associated with the high chemical stability of the MOF in body fluids, enables an unprecedented slow replacement of NO by water molecules in biological media, achieving an extraordinarily extended NO delivery time over at least 70 h, exceeding by far the NO kinetics release reported with others porous materials, paving the way for the development of safe and successful gas therapies.

4.
Sci Adv ; 10(28): eadk5846, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985866

RESUMO

The current paradigm considers the control of the MOF/polymer interface mostly for achieving a good compatibility between the two components to ensure the fabrication of continuous mixed-matrix metal-organic framework (MMMOF) membranes. Here, we unravel that the interfacial pore shape nanostructure plays a key role for an optimum molecular transport. The prototypical ultrasmall pore AlFFIVE-1-Ni MOF was assembled with the polymer PIM-1 to design a composite with gradually expanding pore from the MOF entrance to the MOF/polymer interfacial region. Concentration gradient-driven molecular dynamics simulations demonstrated that this pore nanostructuring enables an optimum guided path for the gas molecules at the MOF/polymer interface that decisively leads to an acceleration of the molecular transport all along the MMMOF membrane. This numerical prediction resulted in the successful fabrication of a [001]-oriented nanosheets AlFFIVE-1-Ni/PIM-1 MMMOF membrane exhibiting an excellent CO2 permeability, better than many MMMs, and ideally associated with a sufficiently high CO2/CH4 selectivity that makes this membrane very promising for natural gas/biogas purification.

5.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38785268

RESUMO

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

6.
Chem Sci ; 15(17): 6488-6499, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699260

RESUMO

In recent years, castration-resistant prostate cancer (CRPC) has profoundly impacted the lives of many men, and early diagnosis of medication and illness is crucial. Therefore, a highly efficient detection method for CRPC biomarkers and curing drugs is required. However, the complex and diverse structures of CRPC drugs pose significant challenges for their detection and differentiation. Lanthanide metal-organic frameworks (Ln-MOFs) show great potential for sensing applications due to their intense and characteristic luminescence. In this work, a series of new bimetallic Ln-MOFs (EuxTb1-x-MOF) based luminescent sensor arrays have been developed to identify CRPC drugs, including in mixtures, via principal component analysis (PCA) and hierarchical cluster analysis (HCA) methods. These Ln-MOFs are built with a highly conjugated H2L linker (H2L = 5-(4-(triazole-1-yl)phenyl)isophthalic acid) and exhibit robust strong luminescence emissions (mainly located at 543 and 614 nm) and high energy transfer efficiencies. More specifically, Eu0.096Tb0.904-MOF (MOF 3) has demonstrated good sensing performances for CRPC curing drugs in real human serum samples. Furthermore, the curing drug hydroxyflutamide has been combined with MOF 3, to construct a robust composite sensing platform MOF 3@hydroxyflutamide for highly efficient detection of CRPC biomarkers such as the androgen receptor (AR) and prostate-specific antigen (PSA). Finally, luminescence lifetime measurements, zeta potential measurements, and density functional theory (DFT) calculations were performed to gain insights into the sensing mechanism.

7.
Chem Rev ; 124(12): 7619-7673, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683669

RESUMO

The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.

8.
Nat Commun ; 15(1): 3251, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627391

RESUMO

CALF-20 was recently identified as a benchmark sorbent for CO2 capture at the industrial scale, however comprehensive atomistic insight into its mechanical/thermal properties under working conditions is still lacking. In this study, we developed a general-purpose machine-learned potential (MLP) for the CALF-20 MOF framework that predicts the thermodynamic and mechanical properties of the structure at finite temperatures within first-principles accuracy. Interestingly, CALF-20 was demonstrated to exhibit both negative area compression and negative thermal expansion. Most strikingly, upon application of the tensile strain along the [001] direction, CALF-20 was shown to display a distinct two-step elastic deformation behaviour, unlike typical MOFs that undergo plastic deformation after elasticity. Furthermore, this MOF was shown to exhibit a fracture strain of up to 27% along the [001] direction at room temperature comparable to that of MOF glasses. These abnormal thermal and mechanical properties make CALF-20 as attractive material for flexible and stretchable electronics and sensors.

9.
Chemphyschem ; : e202400283, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634178

RESUMO

Halocarbons have important industrial applications, but because of their contribution to global warming and the fact that they can cause ozone depletion, they are considered highly toxic. Hence, the techniques that can capture and recover the used halocarbons with energy-efficient methods have been recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt % of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption performance is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.

10.
Chem Sci ; 15(14): 5294-5302, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577379

RESUMO

Metal-organic frameworks (MOFs) incorporating open metal sites (OMS) have been identified as promising sorbents for many societally relevant-adsorption applications including CO2 capture, natural gas purification and H2 storage. This has been ascribed to strong specific interactions between OMS and the guest molecules that enable the MOF to achieve an effective capture even under low gas pressure conditions. In particular, the presence of OMS in MOFs was demonstrated to substantially boost the H2 binding energy for achieving high adsorbed hydrogen densities and large usable hydrogen capacities. So far, there is a critical bottleneck to computationally attain a full understanding of the thermodynamics and dynamics of H2 in this sub-class of MOFs since the generic classical force fields (FFs) are known to fail to accurately describe the interactions between OMS and any guest molecules, in particular H2. This clearly hampers the computational-assisted identification of MOFs containing OMS for a target adsorption-related application since the standard high-throughput screening approach based on these generic FFs is not applicable. Therefore, there is a need to derive novel FFs to achieve accurate and effective evaluation of MOFs for H2 adsorption. On this path, as a proof-of-concept, the soc-MOF-1d containing OMS, previously envisaged as a potential platform for H2 adsorption, was selected as a benchmark material and a machine learning potential (MLP) was derived for the Al-soc-MOF-1d from a dataset initially generated by ab initio molecular dynamics (AIMD) simulations. This MLP was further implemented in MD simulations to explore the H2 binding modes as well as the temperature dependence distribution of H2 in the MOF pores from 10 K to 80 K. MLP-Grand Canonical Monte Carlo (GCMC) simulations were then performed to predict the H2 sorption isotherm of Al-soc-MOF-1d at 77 K that was further confirmed using sorption data we collected on this sample. As a further step, MLP-based molecular dynamics (MD) simulations were conducted to anticipate the kinetics of H2 in this MOF. This work delivers the first MLP able to describe accurately the interactions between the challenging H2 guest molecule and MOFs containing OMS. This innovative strategy applied to one of the most complex molecules owing to its highly polarizable nature, paves the way towards a more systematic accurate and efficient in silico assessment of MOFs containing OMS for H2 adsorption and beyond to the low-pressure capture of diverse molecules.

11.
Adv Sci (Weinh) ; 11(21): e2401070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526150

RESUMO

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

12.
Adv Mater ; 36(26): e2314206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517323

RESUMO

The separation of high-value-added chemicals from organic solvents is important for many industries. Membrane-based nanofiltration offers a more energy-efficient separation than the conventional thermal processes. Conceivably, mixed-matrix membranes (MMMs), encompassing metal-organic frameworks (MOFs) as fillers, are poised to promote selective separation via molecular sieving, synergistically combining polymers flexibility and fine-tuned porosity of MOFs. Nevertheless, conventional direct mixing of MOFs with polymer solutions results in underutilization of the MOF fillers owing to their uniform cross-sectional distribution. Therefore, in this work, a multizoning technique is proposed to produce MMMs with an asymmetric-filler density, in which the MOF fillers are distributed only on the surface of the membrane, and a seamless interface at the nanoscale. The design strategy demonstrates five times higher MOF surface coverage, which results in a solvent permeance five times higher than that of conventional MMMs while maintaining high selectivity. Practically, MOFs are paired with polymers of similar chemical nature to enhance their adhesion without the need for surface modification. The approach offers permanently accessible MOF porosity, which translates to effective molecular sieving, as exemplified by the polybenzimidazole and Zr-BI-fcu-MOF system. The findings pave the way for the development of composite materials with a seamless interface.

13.
Angew Chem Int Ed Engl ; 63(15): e202320008, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38358019

RESUMO

The improvement of the Total Isomerization Process (TIP) for the production of high-quality gasoline with the ultimate goal of reaching a Research Octane Number (RON) higher than 92 requires the use of specific sorbents to separate pentane and hexane isomers into classes of linear, mono- and di-branched isomers. Herein we report the design of a new multi-cage microporous Fe(III)-MOF (referred to as MIP-214, MIP stands for materials of the Institute of Porous Materials of Paris) with a flu-e topology, incorporating an asymmetric heterofunctional ditopic ligand, 4-pyrazolecarboxylic acid, that exhibits an appropriate microporous structure for a thermodynamic-controlled separation of hydrocarbon isomers. This MOF produced via a direct, scalable, and mild synthesis route was proven to encompass a unique separation of C5/C6 isomers by classes of low RON over high RON alkanes with a sorption hierarchy: (n-hexane≫n-pentane≈2-methylpentane>3-methylpentane)low RON≫(2,3-dimethylbutane≈i-pentane≈2,2-dimethylbutane)high RON following the adsorption enthalpy sequence. We reveal for the first time that a single sorbent can efficiently separate such a complex mixture of high RON di-branched hexane and mono-branched pentane isomers from their low RON counterparts, which is a major achievement reported so far.

15.
J Am Chem Soc ; 146(3): 2141-2150, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38191288

RESUMO

Control of humidity within confined spaces is critical for maintaining air quality and human well-being, with implications for environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites. However, existing techniques rely on energy-intensive electrically driven equipment or complex temperature and humidity control (THC) systems, resulting in imprecision and inconvenience. The development of innovative techniques and materials capable of simultaneously meeting the stringent requirements of practical applications holds the key to creating intelligent and energy-efficient humidity control devices. In this study, we introduce chiral reticular chemistry as a tailored synthetic approach, targeting a highly porous hea topological framework characterized by intrinsic interpenetrating pore architecture. This groundbreaking design successfully circumvents the traditional compromise between the pore volume and hydrolytic stability. Our metal-organic framework (MOF) exhibits an extraordinary working capacity, setting a new record at 1.35 g g-1 within the relative humidity (RH) range of 40-60%, without exhibiting hysteresis. Consequently, it emerges as a state-of-the-art candidate for intelligent humidity regulation within confined spaces. Utilizing single-crystal X-ray measurements and molecular simulations, we unequivocally elucidate the mechanism of water clustering and pore filling, underscoring the pivotal role of the linker functionality in governing the water seeding process. Our findings represent a significant advancement in the field, paving the way for the development of highly efficient humidity control technologies and offering promising solutions for diverse real-world scenarios.

16.
ACS Appl Mater Interfaces ; 16(2): 2497-2508, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178626

RESUMO

Designing easy and sustainable strategies for the synthesis of metal-organic frameworks (MOFs) from organic and inorganic wastes with the efficient removal of phosphate from water remains a challenge. The majority of the reported works have utilized costly precursors and nonsoluble ligands for the synthesis of MOFs. Herein, we have developed a low-cost, simple, and sustainable alternative approach using the coprecipitation method in water at room temperature for the synthesis of a new adsorbent-based trimetallic MOF. Poly(ethylene terephthalate) and stainless steel wastes were used as sources of water-soluble disodium terephthalate ligand and three metallic species (chromium, nickel, and iron salts) for the fabrication of trimetallic MOF (CrNiFe-MOF), respectively. The newly developed MOF demonstrates a superior space-time yield of 5760 g m-3 day-1, reaching a level allowing the industrialization production of this sustainable MOF. The scanning electron microscopy and adsorption studies revealed that the developed trimetallic MOF consists of aggregated nanoparticles and the presence of defective as well as mesoporous structures. This MOF showed an enhanced adsorption capacity of phosphate from real eutrophic water samples and higher stability in a range of pHs. The density functional theory calculations evidenced that the phosphate ions preferentially adsorb over H2O toward the metal oxo-trimers, with the adsorption energies increasing from H3PO4 to PO43- species in line with an improvement of the adsorption performance of CrNiFe-MOF when the pH increases, i.e., when HPO42- and PO43- become more predominant. These calculations also supported that the incorporation of Cr metal sites in the oxo-trimer is expected to boost the phosphate affinity of the MOF. Finally, our work provides an easy and eco-friendly approach for MOF designing to enhance phosphate removal from water.

17.
Nanoscale ; 16(7): 3438-3447, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265127

RESUMO

Two-dimensional (2D) metal-organic frameworks (MOFs) hold immense potential for various applications due to their distinctive intrinsic properties compared to their 3D analogues. Herein, we designed a highly stable NiF2(pyrazine)2 2D MOF in silico with a two-dimensional periodic wine-rack architecture. Extensive first-principles calculations and molecular dynamics (MD) simulations based on a newly developed machine learning potential (MLP) revealed that this 2D MOF exhibits huge in-plane Poisson's ratio anisotropy. This results in anomalous negative in-plane stretchability, as evidenced by an uncommon decrease in its in-plane area upon the application of uniaxial tensile strain, which makes this 2D MOF particularly attractive for flexible wearable electronics and ultra-thin sensor applications. We further demonstrated the unique capability of MLP to accurately predict the finite-temperature properties of MOFs on a large scale, exemplified by MLP-MD simulations with a dimension of 28.2 × 28.2 nm2, relevant to the length scale experimentally attainable for the fabrication of MOF films.

18.
Adv Mater ; 36(12): e2210050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651201

RESUMO

Several metal-organic frameworks (MOFs) excel in harvesting water from the air or as heat pumps as they show a steep increase in water uptake at 10-30 % relative humidity (RH%). A precise understanding of which structural characteristics govern such behavior is lacking. Herein, CAU-10-H and CAU-10-CH3 are studied with H, CH3 corresponding to the functions grafted to the organic linker. CAU-10-H shows a steep water uptake ≈18 RH% of interest for water harvesting, yet the subtle replacement of H by CH3 in the organic linker drastically changes the water adsorption behavior to less steep water uptake at much higher humidity values. The materials' structural deformation and water ordering during adsorption with in situ sum-frequency generation, in situ X-ray diffraction, and molecular simulations are unraveled. In CAU-10-H, an energetically favorable water cluster is formed in the hydrophobic pore, tethered via H-bonds to the framework µï£¿OH groups, while for CAU-10-CH3, such a favorable cluster cannot form. By relating the findings to the features of water adsorption isotherms of a series of MOFs, it is concluded that favorable water adsorption occurs when sites of intermediate hydrophilicity are present in a hydrophobic structure, and the formation of energetically favorable water clusters is possible.

19.
Adv Mater ; 36(12): e2211302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36897806

RESUMO

The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.

20.
ACS Appl Mater Interfaces ; 15(41): 48216-48224, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37793090

RESUMO

Indoor air contamination by phthalate ester (PAE) derivatives has become a significant concern since traces of PAEs can cause endocrine disruption, among other health issues. PAE abatement from the environment is thus mandatory to further ensure a good quality of indoor air. Herein, we explored the physisorption-based capture of volatile PAEs by metal-organic frameworks (MOFs). A high-throughput computational screening approach was first applied on databases compiling more than 20,000 MOF structures in order to identify the best MOFs for adsorbing traces of dimethyl phthalate (DMP), considered as a representative molecule of the family of PAE contaminants. Among the 20 top candidates, MOF-74(Ni), which combines substantial DMP uptake at the 10 ppm concentration level (∼0.20 g g-1) with high adsorption enthalpy at infinite dilution (-ΔHads(DMP),0 = 109.9 kJ mol-1), was revealed as an excellent porous material to capture airborne DMP. This prediction was validated by further experiments: gravimetric sorption isotherms were carried out on MOF-74(Ni), replacing DMP by dimethyl maleate (DMM), a molecule with a higher vapor pressure and indeed easier to manipulate compared to DMP while mimicking the adsorption behavior of DMP by MOFs, as evidenced by Monte Carlo calculations. Notably, saturation of DMM by MOF-74(Ni) (∼0.35 g g-1 at 343 K) occurs at very low equivalent concentration of the sorbate, i.e., 15 ppm, while half of the DMM molecules remain trapped in the MOF pores, even by heating the system up to 473 K under vacuum. This computational-experimental study reveals for the first time the potential of MOFs for the capture of phthalate ester contaminants as vapors of key importance to address indoor air quality issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA