Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(2): 170-176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635600

RESUMO

Mechanically interlocked carbon nanostructures represent a relatively unexplored frontier in carbon nanoscience due to the difficulty in preparing these unusual topological materials. Here we illustrate an active-template method in which a [n]cycloparaphenylene precursor macrocycle is decorated with two convergent pyridine donors that coordinate to a metal ion. The metal ion catalyses alkyne-alkyne cross-coupling reactions within the central cavity of the macrocycle, and the resultant interlocked products can be converted into fully π-conjugated structures in subsequent synthetic steps. Specifically, we report the synthesis of a family of catenanes that comprise two or three mutually interpenetrating [n]cycloparaphenylene-derived macrocycles of various sizes. Additionally, a fully π-conjugated [3]rotaxane was synthesized by the same method. The development of synthetic methods to access mechanically interlocked carbon nanostructures of varying topology can help elucidate the implications of mechanical bonding for this emerging class of nanomaterials and allow structure-property relationships to be established.

2.
J Am Chem Soc ; 144(10): 4611-4622, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245032

RESUMO

In this report, we describe the synthesis and electronic properties of small-molecule and polymeric [8]cycloparaphenylenes ([8]CPPs) with disjointed pi-conjugated substituents. Arylene-ethynylene linkers were installed on opposite sides of the [8]CPP nanohoop as separated by three phenyl units on either side such that the monomer systems have syn (C2 symmetry) and anti (C1 symmetry) conformers with a small energy gap (0.1-0.6 kcal/mol). This disjoined substitution pattern necessarily forces delocalization through and around the CPP radial structure. We demonstrate new electronic states from this radial/linear mixing in both the small molecules and the pi extended polymers. Quantum chemical calculations reveal that these electronic processes arise from multiple operative radial/linear conjugation pathways, as the disjoint pattern results in both ortho and meta connections to the CPP ring. These results affirm the unique nature of hybrid radial and linear pi electron delocalization operative in these new conjugation pathways.

3.
ACS Cent Sci ; 7(6): 1056-1065, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235266

RESUMO

Carbon-based materials-such as graphene nanoribbons, fullerenes, and carbon nanotubes-elicit significant excitement due to their wide-ranging properties and many possible applications. However, the lack of methods for precise synthesis, functionalization, and assembly of complex carbon materials has hindered efforts to define structure-property relationships and develop new carbon materials with unique properties. To overcome this challenge, we employed a combination of bottom-up organic synthesis and controlled polymer synthesis. We designed norbornene-functionalized cycloparaphenylenes (CPPs), a family of macrocycles that map onto armchair carbon nanotubes of varying diameters. Through ring-opening metathesis polymerization, we accessed homopolymers as well as block and statistical copolymers constructed from "carbon nanohoops" with a high degree of structural control. These soluble, sp2-carbon-dense polymers exhibit tunable fluorescence emission and supramolecular responses based on composition and sequence. This work represents an important advance toward bridging the gap between small molecules and functional carbon-based materials.

4.
J Am Chem Soc ; 142(5): 2293-2300, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934753

RESUMO

We describe the synthesis and electronic properties of new π-conjugated small molecules and polymers that combine the linear intramolecular conjugation pathways commonly associated with organic electronic materials with the emerging properties of radial conjugation found in cycloparaphenylenes (CPPs) and other curved π-surfaces. Using arylene ethynylenes as prototypical linear segments and [6]/[8]CPP as the radial segments, we demonstrate the formation of new electronic states that are not simply additive responses from the individual components. Quantum chemical calculations of model oligomeric structures reveal these electronic processes to arise from the hybrid nature of wave function delocalization over the linear and radial contributors in the photophysically relevant electronic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA