Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 178: 106185, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142530

RESUMO

Natural products (NP) have been an alternative therapy for several diseases for centuries, and they also serve as an essential source of bioactive molecules, enhancing our drug discovery capacity. Among these NP, some phytochemicals have shown multiple biological effects, including anticancer activity, with higher effectiveness and less toxicity than actual treatments, suggesting their possible use on resilient human malignancies such as leukemia. Imatinib mesylate (Im) is a selective tyrosine kinase inhibitor widely used as an anticancer drug, the gold standard to attend chronic myeloid leukemia (CML). Nevertheless, resistance to this drug in patients with CML renders it insufficient to eliminate cells with Philadelphia chromosome (BCR/ABL+). Moreover, recent studies show that imatinib can induce genotoxic and chromosomic damage in some in vitro and in vivo models. These facts urge finding new therapeutic alternatives to increase the effectiveness of antileukemic treatment. Recent research has shown that the combined effects of phytochemicals with imatinib can improve the cytotoxicity or resensitized the resistant cells to this drug in diverse leukemia cell lines. Independent mechanisms of action among phytochemicals and imatinib include BCR/ABL regulation, downregulation of transcription factors, inhibition of anti-apoptotic and activation of pro-apoptotic proteins, apoptosis induction dependent- and independent of ROS-overproduction, membrane functions disruption, induction of cell cycle arrest, and cell death. This review summarizes and discusses the synergic effect of some phytochemicals combined with imatinib on leukemia cells and the mechanism of action proposed for these combinations, looking to contribute to developing new effective alternatives for leukemia treatment.


Assuntos
Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
F1000Res ; 11: 527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37025948

RESUMO

Background: Several studies have shown that active compounds of Asclepias subulata (cardenolides) have antiproliferative effect on human cancer cells. Cardenolides isolated from A. subulata can be used as active chemical markers to elaborate phytopharmaceutical preparations. To evaluate the antiproliferative effect of a standardized extract of the aerial parts, based on Asclepias subulata cardenolides. Methods: Four standardized extracts were prepared by HPLC-DAD depending on the concentration of calotropin and the antiproliferative activity was measured for the MTT assay, on the A549, MCF-7, HeLa, PC3 and ARPE cell lines. The concentrations of calotropin used for the standardization of the extracts were 10, 7.6, 5 and 1 mg/dL. Results: Standardization of the A. subulata extract based on calotropin at 7.6 mg/g dry weight was achieved and the antiproliferative activity was evaluated over A549, HeLa and MCF-7 cell lines, obtaining proliferation percentages of 3.8 to 13.4% . Conclusions: The standardized extracts of A. subulata at different concentrations of calotropin showed antiproliferative activity against all the cell lines evaluated. The greatest effect was observed against the HeLa cell line.


Assuntos
Asclepias , Humanos , Asclepias/química , Células HeLa , Extratos Vegetais/farmacologia , Cardenolídeos/química , Cardenolídeos/farmacologia
3.
Mol Divers ; 25(4): 2289-2305, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32627094

RESUMO

Since the beginning, natural products have represented an important source of bioactive molecules for cancer treatment. Among them, cardenolides attract the attention of different research groups due to their cardiotonic and antitumor activity. The observed biological activity is closely related to their Na+/K+-ATPase inhibition potency. Currently, the discovery of new compounds against cancer is an urgent need in modern pharmaceutical research. Thus, the aim of this work is to determine the physicochemical properties and substituent effects that module the antiproliferative activity of cardenolides on the human lung cancer cell line A549. We build and curate a library with results obtained from literature; molecular descriptors were calculated in PaDEL software, and SAR/QSAR analysis was performed. The SAR results showed that cardenolides were sensitive to modifications in C and D steroidal ring and required substituent groups with the function of hydrogen bond acceptor at the C3 position. QSAR models to doubly linked-type cardenolides indicated that properties as lipoaffinity and atoms with the capacity to be hydrogen bond acceptors are involved in the increment of antiproliferative activity on A549 cell line. In contrast, the presence and position of very electro-negative atoms on the molecule decreased the antiproliferative effect on A549 cells. These results suggest that the antiproliferative capacity of cardenolides on the cell line A549 is strongly related to substituent groups on the C3 position, which must not be carbohydrate. Additionally, the steroidal rings C and D must remain without modifications.


Assuntos
Cardenolídeos
4.
Saudi Pharm J ; 25(8): 1137-1143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166901

RESUMO

Cancer is the major cause of death in the world, representing a significant public health problem. Plants have been shown as a great source of secondary metabolites with anticancer activity. The aim of this work was evaluated the antiproliferative activity of the methanolic extracts, chemical fractions and the compound spinasterol isolated of medicinal plant Stegnosperma halimifolium. The methanolic extracts of stem, leaf and stem/leaf was obtained by maceration. The methanolic extract of stem was purified by successive extractions with solvents as n-hexane, ethyl acetate and ethanol. The n-hexane fraction was separated by column chromatographic and monitored by thin layer chromatographic. The compound spinasterol was characterized by 1H NMR, 13C NMR and Mass Spectrometry. Methanolic extracts, chemical, chromatographic fractions and spinasterol was evaluated against RAW 264.7, M12.C3.F6, PC-3, LS-180, A549 and HeLa cancer cell lines by the standardized method MTT for determinate the antiproliferative activity. Methanolic extract of stem shown the better antiproliferative activity against the murine macrophage cancer cell line RAW 264.7. n-Hexane chemical fraction shown antiproliferative activity against human alveolar cancer cell line A549 and RAW 264.7. Was isolated and characterized a compound by NMR 1H and 13C, revealing the presence of sterol spinasterol. Spinasterol shown to have antiproliferative activity against cervical cancer cell line HeLa and RAW 264.7, indicating that spinasterol can be a responsible compound of antiproliferative activity found in the methanolic extract of Stegnosperma halimifolium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA