Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 5964-5972, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665542

RESUMO

Perfluorocompound (PFC) gases play vital roles in microelectronics processing. Requirements for ultra-high purities traditionally necessitate use of virgin sources and thereby hinder the capture, purification, and reuse of these costly gases. Most importantly, gaseous PFCs are incredibly potent greenhouse gases with atmospheric lifetimes on the order of 103-104 years, and thus any environmental emissions have an outsized and prolonged impact on our climate. The development of sorbents that can capture PFC gases from industrial waste streams has lagged substantially behind the progress made over the last decade in capturing CO2 from both point emission sources and directly from air. Herein, we show that the metal-organic framework Zn(fba) (fba2- = 4,4'-(hexafluoroisopropylidene)bis-benzoate) displays an equilibrium selectivity for CF4 adsorption over N2 that surpasses those of all water-stable sorbents that have been reported for this separation. Selective adsorption of both CHF3 and CH4 over N2 is also evident, demonstrating a general preference for tetrahedral C1 gases. This selectivity is enabled by adsorption within narrow corrugated channels lined with ligand-based aryl rings, a site within this material that has not previously been realized as being accessible to guests. Analyses of adsorption kinetics and X-ray diffraction data are used to characterize sorption and diffusion of small adsorbates within these channels and strongly implicate rotation of the linker aryl rings as a gate that modulates transport of the C1 gases through a crystallite. Multi-component breakthrough measurements demonstrate that Zn(fba) is able to resolve mixtures of CF4 and N2 under flow-through conditions. Taken together, this work illuminates the dynamic structure of Zn(fba), and also points toward general design principles that can enable large CF4 selectivities in sorbents with more favorable kinetic profiles.

2.
Langmuir ; 40(19): 9833-9841, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38468456

RESUMO

Dual functional materials (DFMs) are a promising approach to increase the energy efficiency of carbon capture and utilization by combining both steps into a single unit operation. In this Perspective, we analyze the challenges and opportunities of integrated carbon capture and utilization (ICCU) via a thermally driven process. We identify three key areas that will facilitate research progress toward industrially viable solutions: (1) selecting appropriate DFM operating conditions; (2) designing and characterizing interfacial site cooperativity for CO2 adsorption and hydrogenation; and (3) establishing standards for rigorous and comprehensive data reporting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA