Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 156: 218-24, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25846002

RESUMO

Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Dióxido de Carbono/química , Sequestro de Carbono , Poeira , Resíduos Industriais , Aço , Carbonatos/análise , Eletricidade , Minerais/química , Aço/química , Gerenciamento de Resíduos/métodos
2.
J Hazard Mater ; 192(2): 576-84, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21715092

RESUMO

The present study aims to offer a new methodology for consuming two industrial wastes; sulfur, from petroleum and natural gas industries, and cement kiln dust (CKD), from Portland cement industries, in construction industry. Sulfur solidified cement kiln dust material (SSCKDM) was manufactured by mixing molten sulfur, treated sulfur, CKD and sand at a controlled temperature in excess of 120°C. The hot mixture was subsequently cast and shaped into the desired mold and was then allowed to solidify at a specified cooling rate. Solidified materials were immersed for time periods up to 28 days in distilled water at different temperatures of 25 and 60°C, sea water, and acidic and basic universal buffer solutions of pH4 and pH9, respectively. Solidified material performance as function of time and type of aqueous solution exposed to was evaluated in view of compressive strength variations and leachability of metal and heavy metal ions. The results indicated that the solidified articles exhibit homogenous and compact internal microstructure with excellent mechanical properties. However, it showed durability problem upon exposure to aqueous solution environments due to the initial chemical composition of the CKD, whose leached test showed release of relatively high amounts of sulfates and alkali metals. Durability of SSCKDM articles in relation to strength reduction and crack formations control was improved by addition of glass fiber while, the use of anti-leaching agent such as anhydrous sodium sulfide resulted in reduction of leached heavy metals without any measurable decrease in leached amounts of alkali metals and anions from the solidified matrix. Furthermore, based on leachability index method of calculation, potential chemical mobility of metal and heavy metal ions from the solidified matrix was characterized as medium.


Assuntos
Materiais de Construção , Enxofre/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA