Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11206-11216, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391265

RESUMO

Plasma protein therapies are used by millions of people across the globe to treat a litany of diseases and serious medical conditions. One challenge in the manufacture of plasma protein therapies is the removal of salt ions (e.g., sodium, phosphate, and chloride) from the protein solution. The conventional approach to remove salt ions is the use of diafiltration membranes (e.g., tangential flow filtration) and ion-exchange chromatography. However, the ion-exchange resins within the chromatographic column as well as filtration membranes are subject to fouling by the plasma protein. In this work, we investigate the membrane capacitive deionization (MCDI) as an alternative separation platform for removing ions from plasma protein solutions with negligible protein loss. MCDI has been previously deployed for brackish water desalination, nutrient recovery, mineral recovery, and removal of pollutants from water. However, this is the first time this technique has been applied for removing 28% of ions (sodium, chloride, and phosphate) from human serum albumin solutions with less than 3% protein loss from the process stream. Furthermore, the MCDI experiments utilized highly conductive poly(phenylene alkylene)-based ion exchange membranes (IEMs). These IEMs combined with ionomer-coated nylon meshes in the spacer channel ameliorate Ohmic resistances in MCDI improving the energy efficiency. Overall, we envision MCDI as an effective separation platform in biopharmaceutical manufacturing for deionizing plasma protein solutions and other pharmaceutical formulations without a loss of active pharmaceutical ingredients.


Assuntos
Carbono , Purificação da Água , Humanos , Carbono/química , Cloretos , Cloreto de Sódio/química , Albumina Sérica Humana , Sódio , Fosfatos , Eletrodos , Purificação da Água/métodos , Adsorção
2.
ACS Appl Mater Interfaces ; 14(31): 36092-36104, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904491

RESUMO

Freestanding bipolar membranes (BPMs) with an extended-area water splitting junction were fabricated utilizing electrospinning. The junction layer was composed of a mixed fiber mat that was made by concurrently electrospinning sulfonated poly(ether ether ketone) (SPEEK) and quaternized poly(phenylene oxide) (QPPO), with water splitting catalyst nanoparticles intermittently deposited between the fibers. The mat was sandwiched between solution cast SPEEK and QPPO films and hot-pressed to form a dense trilayer BPM with an extended-area junction of finite thickness, composed of QPPO nanofibers embedded in a SPEEK matrix with the catalyst nanoparticles interspaced between the two polymers. The composition, ion-exchange capacity, and catalyst type/loading in the junction were varied, and the water splitting characteristics of the membranes were assessed. The best BPMs fabricated in this work employed a graphene oxide catalyst and exhibited a low trans-membrane voltage drop of about 0.82 V at 1000 mA/cm2 in water splitting experiments with 0.5 M Na2SO4 and stable water splitting operation for 60 h at 800 mA/cm2.

3.
ACS Appl Mater Interfaces ; 7(29): 15944-54, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26146932

RESUMO

To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB. All the thermo-mechanical properties like DMA and TGA were investigated along with water uptake (WR), ion exchange capacity (IEC), dimensional stability, etc. The effect of DSBPB was discussed in brief in connection with alkali recovery and ion conducting channels. The SPPO/DSBPB membranes possess both high water uptake as well as ion exchange capacity with high thermo-mechanical stability. At 25 °C the dialysis coefficients (UOH) appeared to be in the range of 0.0048-0.00814 m/h, whereas the separation factor (S) ranged from 12.61 to 36.88 when the membranes were tested for base recovery in Na2WO4/NaOH waste solution. Prepared membranes showed much improved DD performances compared to traditional SPPO membrane and possess the potentiality to be a promising candidate for alkali recovery via diffusion dialysis.


Assuntos
Álcalis/química , Álcalis/isolamento & purificação , Benzenossulfonatos/química , Cromatografia por Troca Iônica/métodos , Resinas de Troca Iônica/síntese química , Membranas Artificiais , Difusão , Troca Iônica , Teste de Materiais , Éteres Fenílicos/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA