Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 108(4): 1428-1438, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31520507

RESUMO

The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3 mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage.


Assuntos
Materiais Biocompatíveis , Cartilagem Hialina/metabolismo , Articulação do Joelho/metabolismo , Microesferas , Poliésteres , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Células RAW 264.7 , Coelhos
2.
Aquat Toxicol ; 193: 40-49, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29032352

RESUMO

Over the past years, several studies have been dedicated to understanding the physiological ability of the vent mussel Bathymodiolus azoricus to overcome the high metal concentrations present in their surrounding hydrothermal environment. Potential deep-sea mining activities at Azores Triple junction hydrothermal vent deposits would inevitably lead to the emergence of new fluid sources close to mussel beds, with consequent emission of high metal concentrations and potential resolubilization of Cu from minerals formed during the active phase of the vent field. Copper is an essential metal playing a key role in the activation of metalloenzymes and metalloproteins responsible for important cellular metabolic processes and tissue homeostasis. However, excessive intracellular amounts of reactive Cu ions may cause irreversible damages triggering possible cell apoptosis. In the present study, B. azoricus was exposed to increasing concentrations of Cu for 96h in conditions of temperature and hydrostatic pressure similar to those experienced at the Lucky Strike hydrothermal vent field. Specimens were kept in 1L flasks, exposed to four Cu concentrations: 0µg/L (control), 300, 800 and 1600µg/L and pressurized to 1750bar. We addressed the question of how increased Cu concentration would affect the function of antioxidant defense proteins and expression of antioxidant and immune-related genes in B. azoricus. Both antioxidant enzymatic activities and gene expression were examined in gills, mantle and digestive gland tissues of exposed vent mussels. Our study reveals that stressful short-term Cu exposure has a strong effect on molecular metabolism of the hydrothermal vent mussel, especially in gill tissue. Initially, both the stress caused by unpressurization or by Cu exposure was associated with high antioxidant enzyme activities and tissue-specific transcriptional up-regulation. However, mussels exposed to increased Cu concentrations showed both antioxidant and immune-related gene suppression. Under a mining activity scenario, the release of an excess of dissolved Cu to the vent environment may cause serious changes in cellular defense mechanisms of B. azoricus. This outcome, while adding to our knowledge of Cu toxicity, highlights the potentially deleterious impacts of mining activities on the physiology of deep-sea organisms.


Assuntos
Cobre/toxicidade , Fontes Hidrotermais , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Peroxidação de Lipídeos/genética , Mineração , Mytilidae/metabolismo , Estresse Oxidativo/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA