Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 7(48): 44124-44133, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506149

RESUMO

In this work, we provide the first in vitro characterization of two essential proteins from Staphylococcus aureus (S. aureus) involved in iron-sulfur (Fe-S) cluster biogenesis: the cysteine desulfurase SufS and the sulfurtransferase SufU. Together, these proteins form the transient SufSU complex and execute the first stage of Fe-S cluster biogenesis in the SUF-like pathway in Gram-positive bacteria. The proteins involved in the SUF-like pathway, such as SufS and SufU, are essential in Gram-positive bacteria since these bacteria tend to lack redundant Fe-S cluster biogenesis pathways. Most previous work characterizing the SUF-like pathway has focused on Bacillus subtilis (B. subtilis). We focus on the SUF-like pathway in S. aureus because of its potential to serve as a therapeutic target to treat S. aureus infections. Herein, we characterize S. aureus SufS (SaSufS) by X-ray crystallography and UV-vis spectroscopy, and we characterize S. aureus SufU (SaSufU) by a zinc binding fluorescence assay and small-angle X-ray scattering. We show that SaSufS is a type II cysteine desulfurase and that SaSufU is a Zn2+-containing sulfurtransferase. Additionally, we evaluated the cysteine desulfurase activity of the SaSufSU complex and compared its activity to that of B. subtilis SufSU. Subsequent cross-species activity analysis reveals a surprising result: SaSufS is significantly less stimulated by SufU than BsSufS. Our results set a basis for further characterization of SaSufSU as well as the development of new therapeutic strategies for treating infections caused by S. aureus by inhibiting the SUF-like pathway.

4.
J Med Chem ; 62(21): 9438-9449, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31536340

RESUMO

Significant efforts have been reported on the development of influenza antivirals including inhibitors of the RNA-dependent RNA polymerase PA N-terminal (PAN) endonuclease. Based on recently identified, highly active metal-binding pharmacophores (MBPs) for PAN endonuclease inhibition, a fragment-based drug development campaign was pursued. Guided by coordination chemistry and structure-based drug design, MBP scaffolds were elaborated to improve activity and selectivity. Structure-activity relationships were established and used to generate inhibitors of influenza endonuclease with tight-binding affinities. The activity of these inhibitors was analyzed using a fluorescence-quenching-based nuclease activity assay, and binding was validated using differential scanning fluorometry. Lead compounds were found to be highly selective for PAN endonuclease against several related dinuclear and mononuclear metalloenzymes. Combining principles of bioinorganic and medicinal chemistry in this study has resulted in some of the most active in vitro influenza PAN endonuclease inhibitors with high ligand efficiencies.


Assuntos
Antivirais/química , Antivirais/farmacologia , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/enzimologia , RNA Polimerase Dependente de RNA/química , Animais , Antivirais/toxicidade , Cães , Endonucleases/química , Inibidores Enzimáticos/toxicidade , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
6.
Chem Sci ; 11(5): 1216-1225, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34123246

RESUMO

Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity - particularly fragments with three-dimensional (3D) structures - has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called 'metallofragments' (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.

7.
Chem Rev ; 119(2): 1323-1455, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30192523

RESUMO

Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Metaloproteínas/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Metaloproteínas/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Transferases/antagonistas & inibidores , Transferases/metabolismo , Viroses/tratamento farmacológico
8.
J Med Chem ; 61(22): 10206-10217, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351002

RESUMO

Metalloenzymes represent an important target space for drug discovery. A limitation to the early development of metalloenzyme inhibitors has been the lack of established structure-activity relationships (SARs) for molecules that bind the metal ion cofactor(s) of a metalloenzyme. Herein, we employed a bioinorganic perspective to develop an SAR for inhibition of the metalloenzyme influenza RNA polymerase PAN endonuclease. The identified trends highlight the importance of the electronics of the metal-binding pharmacophore (MBP), in addition to MBP sterics, for achieving improved inhibition and selectivity. By optimization of the MBPs for PAN endonuclease, a class of highly active and selective fragments was developed that displays IC50 values <50 nM. This SAR led to structurally distinct molecules that also displayed IC50 values of ∼10 nM, illustrating the utility of a metal-centric development campaign in generating highly active and selective metalloenzyme inhibitors.


Assuntos
Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/enzimologia , Metais/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Descoberta de Drogas , Endonucleases/química , Endonucleases/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
10.
J Am Chem Soc ; 139(31): 10856-10862, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692802

RESUMO

Protonated states of the nitrogenase active site are mechanistically significant since substrate reduction is invariably accompanied by proton uptake. We report the low pH characterization by X-ray crystallography and EPR spectroscopy of the nitrogenase molybdenum iron (MoFe) proteins from two phylogenetically distinct nitrogenases (Azotobacter vinelandii, Av, and Clostridium pasteurianum, Cp) at pHs between 4.5 and 8. X-ray data at pHs of 4.5-6 reveal the repositioning of side chains along one side of the FeMo-cofactor, and the corresponding EPR data shows a new S = 3/2 spin system with spectral features similar to a state previously observed during catalytic turnover. The structural changes suggest that FeMo-cofactor belt sulfurs S3A or S5A are potential protonation sites. Notably, the observed structural and electronic low pH changes are correlated and reversible. The detailed structural rearrangements differ between the two MoFe proteins, which may reflect differences in potential protonation sites at the active site among nitrogenase species. These observations emphasize the benefits of investigating multiple nitrogenase species. Our experimental data suggest that reversible protonation of the resting state is likely occurring, and we term this state "E0H+", following the Lowe-Thorneley naming scheme.


Assuntos
Nitrogenase/metabolismo , Prótons , Domínio Catalítico , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Nitrogenase/química
11.
Chemistry ; 21(15): 5954-61, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25737050

RESUMO

The two-dimensional assembly of multicarboxylated arenes is explored at the liquid-graphite interface using scanning tunneling microscopy. Symmetry variations were introduced via phenylene spacer addition and the influence of these perturbations on the formation of hydrogen-bonded motifs from an alkanoic acid solvent is observed. This work demonstrates the importance of symmetry in 2D crystal formation and draws possible links of this behavior to prediction of coordination modes in three-dimensional coordination polymers.

12.
Biochemistry ; 54(11): 2052-60, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25710326

RESUMO

In the nitrogenase molybdenum-iron (MoFe) protein, we have identified five potential substrate access pathways from the protein surface to the FeMo-cofactor (the active site) or the P-cluster using experimental structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including those from Klebsiella pneumoniae, were analyzed for the presence of nonwater, small molecules bound to the protein interior. Each pathway is based on identification of plausible routes from buried small molecule binding sites to both the protein surface and a metallocluster. Of these five pathways, two have been previously suggested as substrate access pathways. While the small molecule binding sites are not conserved among the three species of MoFe protein, residues lining the pathways are generally conserved, indicating that the proposed pathways may be accessible in all three species. These observations imply that there is unlikely a unique pathway utilized for substrate access from the protein surface to the active site; however, there may be preferred pathways such as those described here.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Clostridium/enzimologia , Klebsiella pneumoniae/enzimologia , Modelos Moleculares , Molibdoferredoxina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Ligantes , Molibdoferredoxina/química , Pressão , Conformação Proteica , Propriedades de Superfície , Xenônio/química
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 274-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664737

RESUMO

The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Šresolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the ß-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.


Assuntos
Azotobacter vinelandii/química , Proteínas de Bactérias/química , Clostridium/química , Molibdoferredoxina/química , Sítios de Ligação , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química
14.
Langmuir ; 27(3): 936-42, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21207984

RESUMO

Various carboxylic acid substitution patterns on the 1,3,5-triphenylbenzene nucleus were explored, and their influence on the symmetry of the resulting two-dimensional (2D) crystal structures was assessed. The symmetry of 1,3,5-benzenetribenzoic acid (H(3)BTB) was reduced by modifying the substitution pattern of the arene and/or adding an additional carboxylic acid. Four analogues belonging to various point groups were studied. Comparison of the monolayers of the analogues to that of H(3)BTB shows that plane group symmetry and molecular symmetry are not correlated: H(3)BTB and its analogues exhibit the same plane group p2 at the heptanoic acid/graphite interface. The 2D crystal structure of the H(3)BTB analogues is more strongly controlled by the geometry of hydrogen-bonding interactions rather than molecular symmetry. Other significant observations in this study include porosity, uncommon hydrogen-bonding motifs, and an unusually high number of inquivalent molecules (Z' = 3) present in the 2D crystal of the lowest symmetry analogue. This research demonstrates that reduction of molecular symmetry based on geometric modification of noncovalent interactions allows for control over porosity of the 2D crystals (close-packed structures to nanoporous networks) without changing the core shape of the molecule.

15.
J Am Chem Soc ; 131(23): 7946-7, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19456153

RESUMO

Highly symmetric 2D nanoporous molecular networks containing rhombic voids are demonstrated to be accessible from low symmetry amphiphilic molecules. The amide amphiphiles overcome the barrier to symmetry generation in the two-dimensional crystal through forming an aggregate as a building block. This aggregate consists of three inequivalent amphiphiles that assemble to create 3- and 6-fold rotation axes through hydrogen bonding. In the 6-fold rotation axis, an unusual hydrogen bonding network, supported by high resolution scanning tunneling microscopy (STM) images and computation, is observed. This network formed by amide groups significantly contributes to constructing the rhombic nanoporous network, whereas carboxylic acid amphiphiles do not adopt this nanoporous network due to a geometric difference of hydrogen bonding. This investigation demonstrates that a high symmetry pattern is achievable without correlation with molecular symmetry through the proper combination of noncovalent interactions of simple amphiphilic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA