Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(45): e2103812, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541731

RESUMO

The oxygen evolution reaction (OER) limits the energy efficiency of electrocatalytic systems due to the high overpotential symptomatic of poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, a novel synthesis of nanocrystalline Ni-Co-Se using ball milling at cryogenic temperature is reported. It is discovered that, by anodizing the Ni-Co-Se structure during OER, Se ions leach out of the original structure, allowing water molecules to hydrate Ni and Co defective sites, and the nanoparticles to evolve into an active Ni-Co oxyhydroxide. This transformation is observed using operando X-ray absorption spectroscopy, with the findings confirmed using density functional theory calculations. The resulting electrocatalyst exhibits an overpotential of 279 mV at 0.5 A cm-2 and 329 mV at 1 A cm-2 and sustained performance for 500 h. This is achieved using low mass loadings (0.36 mg cm-2 ) of cobalt. Incorporating the electrocatalyst in an anion exchange membrane water electrolyzer yields a current density of 1 A cm-2 at 1.75 V for 95 h without decay in performance. When the electrocatalyst is integrated into a CO2 -to-ethylene electrolyzer, a record-setting full cell voltage of 3 V at current density 1 A cm-2 is achieved.

2.
Nanoscale ; 13(1): 242-252, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33331367

RESUMO

Noble metal clusters have unique photophysical properties, especially as a new class of materials for multiphoton biomedical imaging. The previously studied Au25SR18 exhibits "giant" two-photon absorbance cross sections. Herein, we investigate the origins of the large two photon absorption for Au25SR18, as well as 10 other Au and Ag clusters using femtosecond pump/probe transient absorption spectroscopy (fsTAS). Excited state absorbance (ESA) ubiquitous to thiolated Au and Ag clusters is used herein as an optical signature of two-photon absorbances of the 11 different Au and Ag clusters, which does not require high quantum yields of emission. The large selection of clusters, studied with a single laser system, allows us to draw conclusions on the role of the particular metal, cluster size/structure, and the effects of the ligands on the ability to absorb multiple NIR photons. The use of a laser with a 1028 nm excitation also allows us to investigate the dramatic effect of excitation wavelength and explain why laser wavelength has led to large variances in the non-linear responses reported for clusters to date. We discuss the double resonance mechanism, responsible for giant two photon absorbance cross-sections, helping match properties of metal clusters with experimental conditions for maximizing signal/response in multiphoton applications.

3.
J Comput Chem ; 41(3): 184-193, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31646667

RESUMO

Electronic structure calculations representing the molecular orbitals (MOs) with contracted planewave basis functions (CPWBFs) have been reported recently. CPWBFs are Fourier-series representations of atom-centered basis functions. The mathematical features of CPWBFs permit the construction of matrix-vector products, FC o , involving the application of the Fock matrix, F, to the set of occupied MOs, C o , without the explicit evaluation of F. This approach offers a theoretical speed-up of M/n over F-based methods, where M and n are the number of basis functions and occupied MOs, respectively. The present study reports methodological advances that permit FC o -based optimization of wavefunction formed from CPWBFs. In particular, a technique is reported for optimizing wavefunctions by combining pseudodiagonalization techniques based on an exact representation of FC o , approximate information regarding the virtual orbital energies, and direct inversion of the iterative subspace optimization schemes to guide the wavefunction to a converged solution. This method is found to speed-up wavefunction optimizations by factors of up to ~6 - 8 over F-based optimization methods while providing identical results. Further, the computational cost of this technique is relatively insensitive to basis set size, thus providing further benefits in calculations using large CPWBF basis sets. The results of density functional theory calculations show that this method permits the use of hybrid exchange-correlation (XC) functionals with a small increase in effort over analogous calculations using generalized gradient approximation XC functionals. © 2019 Wiley Periodicals, Inc.

4.
J Comput Chem ; 39(23): 1890-1901, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247768

RESUMO

Ways to reduce the computational cost of periodic electronic structure calculations by using basis functions corresponding to linear combinations of planewaves have been examined recently. These contracted planewave (CPW) basis functions correspond to Fourier series representations of atom-centered basis functions, and thus provide access to some beneficial properties of planewave (PW) and localized basis functions. This study reports the development and assessment of a direct inversion of the iterative subspace (DIIS) method that employs unique properties of CPW basis functions to efficiently converge electronic wavefunctions. This method relies on access to a PW-based representation of the electronic structure to provide a means of efficiently evaluating matrix-vector products involving the application of the Fock matrix to the occupied molecular orbitals. These matrix-vector products are transformed into a form permitting the use of direct diagonalization techniques and DIIS methods typically employed with atom-centered basis sets. The abilities of this method are assessed through periodic Hartree-Fock calculations of a range of molecules and solid-state systems. The results show that the method reported in this study is approximately five times faster than CPW-based calculations in which the entire Fock matrix is calculated. This method is also found to be weakly dependent upon the size of the basis set, thus permitting the use of larger CPW basis sets to increase variational flexibility with a minor impact on computational performance. © 2018 Wiley Periodicals, Inc.

5.
Phys Chem Chem Phys ; 20(16): 11444-11453, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29645028

RESUMO

The structure and properties of α-Ni(OH)2 containing water and nitrate have been investigated computationally. The adsorption of water molecules on the Ni(OH)2 surface is also investigated to provide insight into the nature of the water-Ni(OH)2 interactions. The spectroscopic and dynamical behaviour of the intercalated species has been characterized and used to explain experimental findings reported for this material. The results presented here indicate that the water molecules interact non-covalently with Ni(OH)2, with a binding energy that is comparable in magnitude with that of the water dimer hydrogen bond. The presence of the intercalated species increases the distance between the Ni(OH)2 layers such that the interlayer interactions are negligible. The weakening of the interlayer interactions facilitates the horizontal displacement of the layers relative to one another, providing a possible origin for stacking faults observed in α-Ni(OH)2. Comparison of the vibrational frequencies calculated here with the experimental spectra confirms that α-Ni(OH)2 containing only water molecules can be synthesized. The structures of the water molecules intercalated in α-Ni(OH)2 were found to be analogous to those absorbed in γ-NiOOH, while the water-layer interactions are stronger in γ-NiOOH. The results presented here characterize the structure and interactions of water intercalated in nickel hydroxides and also provide insights into the effects of intercalated water on the properties of layered metal hydroxides.

6.
Nanotechnology ; 29(2): 025708, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29099392

RESUMO

Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.

7.
Chemphyschem ; 18(24): 3536-3539, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28960768

RESUMO

Self-assembled monolayers of N-heterocyclic carbenes (NHCs) on copper are reported. The monolayer structure is highly dependent on the N,N-substituents on the NHC. On both Cu(111) and Au(111), bulky isopropyl substituents force the NHC to bind perpendicular to the metal surface while methyl- or ethyl-substituted NHCs lie flat. Temperature-programmed desorption studies show that the NHC binds to Cu(111) with a desorption energy of Edes =152±10 kJ mol-1 . NHCs that bind upright desorb cleanly, while flat-lying NHCs decompose leaving adsorbed organic residues. Scanning tunneling microscopy of methylated NHCs reveals arrays of covalently linked dimers which transform into adsorbed (NHC)2 Cu species by extraction of a copper atom from the surface after annealing.

8.
J Chem Phys ; 146(10): 104108, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298125

RESUMO

The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

9.
Phys Chem Chem Phys ; 19(3): 1963-1974, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28009877

RESUMO

Metal hydroxides are a class of layered materials that contain two-dimensional metal hydroxide layers that can be isolated to form layered nanostructures. In this work, density functional theory (DFT) and self-consistent-charge density-functional tight-binding (SCC-DFTB) methods have been used to investigate the properties of magnesium hydroxide and calcium hydroxide nanostructures. The properties of single layer and multi layer structures with up to 10 metal hydroxide sheets and nanoparticles containing more than 2000 atoms have been calculated and compared with the bulk properties of these systems. The accuracy of the DFT methods employed and SCC-DFTB parameters developed in this study were validated against available experimental data. The results of the calculations indicate that significant differences exist between the properties of the nanostructures and the corresponding bulk values. In particular, the interlayer binding energies, electronic band gaps, and spectroscopic features are size-dependent and tend to converge to the bulk values as the size of the nanosystem is increased. The calculated binding energies and shear moduli show that all nanostructures are mechanically stable, in agreement with the experimental reports; although, their stabilities may be affected by the presence of intercalated species. Energy decomposition analyses reveal that the intralayer interactions in the investigated systems are predominantly electrostatic in nature, while the interlayer interactions are dominated by dispersion and polarization components. The results presented here quantify various properties of magnesium hydroxide and calcium hydroxide nanostructures, and could be used to understand the properties of other nanosystems containing layers of metal hydroxides in their structure.

10.
J Chem Phys ; 145(19): 194506, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27875893

RESUMO

First-principles molecular dynamics simulations are used to investigate the chemical behavior of bulk thioacetaldehyde (MeC(H)S) in response to changes in pressure, P. The simulations show that these molecules oligomerize in response to applied P. Oligomerization is initiated through C-S bond formation, with constrained dynamics simulations showing that the barrier to this reaction step is lowered significantly by applied P. Subsequent reactions involving the formation of additional C-S bonds or radical processes that lead to S-S and C-C bonds lengthen the oligomers. Oligomerization is terminated through proton transfer or the formation of rings. The mechanistic details of all reactions are examined. The results indicate that the P-induced reactivity of the MeC(H)S-based system differs significantly from that of analogous MeC(H)O-based systems, which have been reported previously. Comparison with the MeC(H)O study shows that replacing oxygen with sulfur significantly lowers the P required to initiate oligomerization (from 26 GPa to 5 GPa), increases the types of reactions in which systems of this type can take part, and increases the variety of products formed through these reactions. These differences can be explained in terms of the electronic structures of these systems, which may be useful for certain high P applications.

11.
Nat Commun ; 7: 12654, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585494

RESUMO

The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol(-1)) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films.

12.
Sci Rep ; 6: 23059, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26972114

RESUMO

Mechanochemistry, i.e. the application of forces, F, at the molecular level, has attracted significant interest as a means of controlling chemical reactions. The present study uses quantum chemical calculations to explore the abilities to mechanically eliminate activation energies, ΔE(‡), for unimolecular and bimolecular reactions. The results demonstrate that ΔE(‡) can be eliminated for unimolecular reactions by applying sufficiently large F along directions that move the reactant and/or transition state (TS) structures parallel to the zero-F reaction coordinate, S0. In contrast, eliminating ΔE(‡) for bimolecular reactions requires the reactant to undergo a force-induced shift parallel to S0 irrespective of changes in the TS. Meeting this requirement depends upon the coupling between F and S0 in the reactant. The insights regarding the differences in eliminating ΔE(‡) for unimolecular and bimolecular reactions, and the requirements for eliminating ΔE(‡), may be useful in practical efforts to control reactions mechanochemically.

13.
J Phys Chem A ; 119(36): 9557-67, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26295217

RESUMO

The anharmonic vibrational spectrum of UF6 is computed in full dimensionality directly from ab initio data, i.e., bypassing the construction of a potential energy surface (PES). The vibrational Schrödinger equation is solved by fitting parameters of an adaptable basis using a modified version of the rectangular collocation algorithm of Manzhos and Carrington (J. Chem. Phys . 2013, 139, 051101). The basis functions are products of parametrized Hermite polynomials that impose approximate nodal structure. The Schrödinger equation is solved in normal coordinates. The results show that anharmonicity and coupling do noticeably affect the vibrational transitions, shifting them by several cm(-1). Although UF6 has 15 coordinates, we compute hundreds of levels with fewer than 1000 basis functions and about 50,000 ab initio points. It is the efficiency of the basis that makes it possible to forego a PES.

14.
Top Curr Chem ; 369: 37-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26233311

RESUMO

The use of mechanical stresses to induce chemical reactions has attracted significant interest in recent years. Computational modeling can play a significant role in developing a comprehensive understanding of the interplay between stresses and chemical reactivity. In this review, we discuss techniques for simulating chemical reactions occurring under mechanochemical conditions. The methods described are broadly divided into techniques that are appropriate for studying molecular mechanochemistry and those suited to modeling bulk mechanochemistry. In both cases, several different approaches are described and compared. Methods for examining molecular mechanochemistry are based on exploring the force-modified potential energy surface on which a molecule subjected to an external force moves. Meanwhile, it is suggested that condensed phase simulation methods typically used to study tribochemical reactions, i.e., those occurring in sliding contacts, can be adapted to study bulk mechanochemistry.

15.
Dalton Trans ; 44(33): 14991-5005, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26227812

RESUMO

With its facile synthesis, the pyridine-1,2,3-triazole chelate is an attractive building block for coordination-driven self-assembly. When two such chelates are bridged by a spacer and exposed to cations of octahedral geometrical preference, they generally self-assemble into dinuclear triple-stranded structures in the solid state and in solution in the presence of non-coordinating counter-ions. In solution, a wider range of architectures may nevertheless form, depending on the nature of the spacer. A systematic study of the spacer and substitution pattern is therefore presented, which allows assessing the various factors affecting self-assembly around the pyridine-1,2,3-triazole chelate, as well as the stereochemical control in these architectures. Applications to chirality, magnetism and system selection are discussed, and involve Fe(ii), Ni(ii), Zn(ii) and Cu(i) cations.

16.
Soft Matter ; 11(19): 3860-8, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25864629

RESUMO

The mesomorphic properties of phenoxy-terminated 5-alkoxy-2-(4-alkoxyphenyl)pyrimidine liquid crystals can be tuned in a predictable fashion with fluoro substituents on the phenoxy end-group. We show that an ortho-fluoro substituent promotes the formation of a tilted smectic C (SmC) phase whereas a para-fluoro substituent promotes the formation of an orthogonal smectic A (SmA) phase. The balance between SmA and SmC phases may be understood in terms of the energetic preference of the phenoxy end-groups to self-assemble via arene-arene interactions in a parallel or antiparallel geometry, and how these non-covalent interactions may cause either a suppression or enhancement of out-of-layer fluctuations at the interface of smectic layers. Calculations of changes in the potential energy of association ΔE for non-covalent dimers of fluoro-substituted n-butyloxybenzene molecules in parallel and antiparallel geometries support this hypothesis. We also show how mesomorphic properties can be further tuned by difluoro and perfluoro substitution, including difluoro substitution at the ortho positions, which uniquely promotes the formation of a SmC-nematic phase sequence.

17.
Nat Chem ; 6(5): 409-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24755592

RESUMO

Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold-carbon bond relative to that of a gold-sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs.


Assuntos
Ouro/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Compostos Heterocíclicos/síntese química , Metano/síntese química , Metano/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
J Am Chem Soc ; 135(45): 17209-22, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24111543

RESUMO

A density functional theory study of the cleavage of a DNA model [p-nitrophenyl methyl phosphate (2)] and two RNA models [p-nitrophenyl 2-hydroxypropyl phosphate (3) and phenyl 2-hydroxypropyl phosphate (4)] promoted by the dinuclear Zn((II)) complex of 1,3-bis(1,5,9-triazacyclododec-1-yl)propane formulated with a bridging methoxide (1a) was undertaken to determine possible mechanisms for the transesterification processes that are consistent with experimental data. The initial substrate-bound state of 2:1a or 3:1a has the two phosphoryl oxygens bridging Zn((II))1 and Zn((II))2. For each of 2 and 3, four possible mechanisms were investigated, three of which were consistent with the overall free energy for the catalytic cleavage step for each substrate. The computations revealed various roles for the metal ions in the three mechanisms. These encompass concerted or stepwise processes, where the two metal ions with associated alkoxy groups [Zn((II))1:((-)OCH3) and Zn((II))1:((-)O-propyl)] play the role of a direct nucleophile (on 2 and 3, respectively) or where Zn((II))1:((-)OCH3) can act as a general base to deprotonate an attacking solvent molecule in the case of 2 or the attacking 2-hydroxypropyl group in the case of 3. The Zn((II))2 ion can serve as a spectator (after exerting a Lewis acid role in binding one of the phosphates' oxygens) or play active additional roles in providing direct coordination of the departing aryloxy group or positioning a hydrogen-bonding solvent to assist the departure of the leaving group. An important finding revealed by the calculations is the flexibility of the ligand system that allows the Zn-Zn distance to expand from ~3.6 Å in 1a to over 5 Å in the transforming 2:1a and 3:1a complexes during the catalytic event.


Assuntos
Complexos de Coordenação/química , DNA/química , Organofosfatos/química , Propano/química , RNA/química , Zinco/química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Modelos Moleculares , Organofosfatos/metabolismo , Propano/metabolismo , RNA/metabolismo , Zinco/metabolismo
19.
J Am Chem Soc ; 135(9): 3407-10, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23425336

RESUMO

The new N,C-chelate boron compounds B(2-phenylazolyl)Mes2 [Mes = mesityl; azolyl = benzothiazolyl (1a), 4-methylthiazolyl (2a), benzoxazolyl (3a), benzimidazolyl (4a)] undergo an unprecedented multistructural transformation upon light irradiation or heating, sequentially producing isomers b, c, d, and e. The dark isomers b generated by photoisomerization of a undergo a rare thermal intramolecular H-atom transfer (HAT), reducing the azole ring and generating new isomers c, which are further transformed into isomers d. Remarkably, isomers d can be converted to their diastereomers e quantitatively by heating, and e can be converted back to d by irradiation at 300 nm. The structures of isomers 1d and 1e were established by X-ray diffraction. The unusual HAT reactivity can be attributed to the geometry of the highly energetic isomers b and the relatively low aromaticity of the azole rings. The boryl unit plays a key role in the reversible interconversion of d and e, as shown by mechanistic pathways established through DFT and TD-DFT calculations.


Assuntos
Azóis/síntese química , Compostos de Boro/síntese química , Quelantes/síntese química , Temperatura , Azóis/química , Compostos de Boro/química , Quelantes/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica
20.
Chem Commun (Camb) ; 48(63): 7829-31, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22751352

RESUMO

The partial positive charge of amide protons is used to promote macrocyclization and form crown-ether analogs. Their deprotonation generates very selective pH-switchable alkaline earth ion receptors only in the presence of an appropriate substrate.


Assuntos
Éteres de Coroa/química , Metais Alcalinoterrosos/química , Oximas/química , Amidas/química , Ciclização , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA