Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067711

RESUMO

Diffuse correlation spectroscopy is a non-invasive optical modality used to measure cerebral blood flow in real time, and it has important potential applications in clinical monitoring and neuroscience. As such, many research groups have recently been investigating methods to improve the signal-to-noise ratio, imaging depth, and spatial resolution of diffuse correlation spectroscopy. Such methods have included multispeckle, long wavelength, interferometric, depth discrimination, time-of-flight resolution, and acousto-optic detection strategies. In this review, we exhaustively appraise this plethora of recent advances, which can be used to assess limitations and guide innovation for future implementations of diffuse correlation spectroscopy that will harness technological improvements in the years to come.

2.
Opt Lett ; 48(24): 6352-6355, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099746

RESUMO

Sensing and filtering applications often require Fabry-Perot (FP) etalons with an Interferometer Transfer Function (ITF) having high visibility, narrow Full Width at Half Maximum (FWHM), and high sensitivity. For the ITF to have these characteristics, the illumination beam must be matched to the modes of the FP cavity. This is challenging when a small illumination element size is needed, as typical focused beams are not matched to the FP cavity modes. Bessel beams are a potential alternative as their structure resembles the FP cavity modes while possessing a focused core. To study the feasibility of using Bessel beam illumination, in this Letter, ITFs of an FP etalon were measured using Bessel and Gaussian illumination beams. A Bessel beam with core size of 28 µm provided an ITF with visibility 3.0 times higher, a FWHM 0.3 times narrower, and a sensitivity 2.2 times higher than a Gaussian beam with waist 32 µm. The results show that Bessel beam illumination can provide ITFs similar to that of collimated beam illumination while also having with a focused core.

3.
Sci Rep ; 13(1): 1507, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707545

RESUMO

We examine the inverse problem of retrieving sample refractive index information in the context of optical coherence tomography. Using two separate approaches, we discuss the limitations of the inverse problem which lead to it being ill-posed, primarily as a consequence of the limited viewing angles available in the reflection geometry. This is first considered from the theoretical point of view of diffraction tomography under a weak scattering approximation. We then investigate the full non-linear inverse problem using a variational approach. This presents another illustration of the non-uniqueness of the solution, and shows that even the non-linear (strongly scattering) scenario suffers a similar fate as the linear problem, with the observable spatial Fourier components of the sample occupying a limited support. Through examples we demonstrate how the solutions to the inverse problem compare when using the variational and diffraction-tomography approaches.

4.
Opt Express ; 30(26): 46294-46306, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558587

RESUMO

We present a model that calculates optical fields reflected and transmitted by a Fabry-Perot (FP) etalon composed of interfaces with non-planar surface topography. The model uses the Rayleigh-Rice theory, which predicts the fields reflected and transmitted by a single interface, to account for the non-planar surface topography of each interface. The Rayleigh-Rice theory is evaluated iteratively to account for all round trips that light can take within the FP etalon. The model predictions can then be used to compute Interferometer transfer function (ITF)s, by performing wavelength or angle resolved simulations enabling predictions of the bandwidth, peak transmissivity, and sensitivity of FP etalons. The model was validated against the Pseudospectral time-domain (PSTD) method, which resulted in good agreement. Since the model accuracy is expected to reduce as the Root mean square (RMS) of the topographic map increases, the error in the model's predictions was studied as a function of topographic map RMS. Finally, application of the model was exemplified by predicting the impact of roughness on ITFs and computing the changes in FP etalon transmissivity as cavity thickness is modulated by an ultrasonic wave.

5.
Opt Express ; 30(26): 46404-46417, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558595

RESUMO

A numerical model of Gaussian beam propagation in planar Fabry-Perot (FP) etalons is presented. The model is based on the ABCD transfer matrix method. This method is easy to use and interpret, and readily connects models of lenses, mirrors, fibres and other optics to aid simulating complex multi-component etalon systems. To validate the etalon model, its predictions were verified using a previously validated model based on Fourier optics. To demonstrate its utility, three different etalon systems were simulated. The results suggest the model is valid and versatile and could aid in designing and understanding a range of systems containing planar FP etalons. The method could be extended to model higher order beams, other FP type devices such as plano-concave resonators, and more complex etalon systems such as those involving tilted components.

6.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 927-935, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215454

RESUMO

Finite-difference time-domain (FDTD) and pseudospectral time-domain (PSTD) methods are numerical electromagnetic simulation techniques that have been employed to perform rigorous simulations of broadband illuminations in several contexts. However, the computational cost of calculating the incident source fields introduced into the FDTD/PSTD grid can be considerable. In some cases, this can exceed the computational cost of what might be considered the principal part of the FDTD/PSTD algorithm, which calculates the spatial derivative of fields throughout the computational grid. In this paper, we analyze an existing method that has been used to approximate broadband illumination, which uses knowledge of the field only at a central frequency of the spectrum. We then present a new, to the best of our knowledge, approximation of the broadband illumination, which is more accurate, while remaining computationally tractable. Finally, we present some examples to verify the accuracy and efficiency of the new method and compare these results with the existing method.

7.
IEEE Trans Med Imaging ; 41(5): 1188-1195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34941505

RESUMO

The assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem. In this work, we used a high-resolution implementation of the edge illumination X-ray phase contrast tomography based on "pixel-skipping" X-ray masks and sample dithering, to provide high definition virtual slices of breast specimens. The scanner was originally designed for intra-operative applications in which short scanning times were prioritised over spatial resolution; however, thanks to the versatility of edge illumination, high-resolution capabilities can be obtained with the same system simply by swapping x-ray masks without this imposing a reduction in the available field of view. This makes possible an improved visibility of fine tissue strands, enabling a direct comparison of selected CT slices with histology, and providing a tool to identify suspect features in large specimens before slicing. Combined with our previous results on fast specimen scanning, this works paves the way for the design of a multi-resolution EI scanner providing intra-operative capabilities as well as serving as a digital pathology system.


Assuntos
Técnicas Histológicas , Iluminação , Microscopia de Contraste de Fase/métodos , Radiografia , Raios X
8.
Opt Express ; 29(15): 24144-24150, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614664

RESUMO

Fabry-Perot (FP) etalons are used as filters and sensors in a range of optical systems. The reflected and transmitted fields associated with an FP etalon have traditionally been predicted by the Airy function, which assumes a plane wave illumination. FP etalons are, however, often illuminated by non-collimated beams, rendering the Airy function invalid. To address this limitation, we describe the angular Airy function which calculates the reflected and transmitted fields for arbitrary illumination beams, using angular spectrum decomposition. Combined with realistic models of the experimental illumination beams and detection optics, we show that the angular Airy function can accurately predict experimental wavelength resolved intensity measurements. Based on the angular Airy function, we show that the fundamental operating principle of an FP etalon is as an angular-spectral filter. Based on this interpretation we explain the asymmetry, broadening and visibility reduction seen on wavelength resolved intensity measurements from high Q-factor FP etalons illuminated with focused Gaussian beams.

9.
Med Phys ; 48(10): 5884-5896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387879

RESUMO

PURPOSE: In this work, an analytical model describing the noise in the retrieved three contrast channels, transmission, refraction, and ultra small-angle scattering, obtained with edge illumination X-ray phase-based imaging system is presented and compared to experimental data. METHODS: In EI, images acquired at different displacements of the presample mask (i.e., different illumination levels referred to as points on the "illumination curve"), followed by pixel-wise curve fitting, are exploited to quantitatively retrieve the three contrast channels. Therefore, the noise in the final image will depend on the error associated with the fitting process. We use a model based on the derivation of the standard error on fitted parameters, which relies on the calculation of the covariance matrix, to estimate the noise and the cross-channel correlation as a function of the position of the sampling points. In particular, we investigated the most common cases of 3 and 5 sampling points. In addition, simulations have been used to better understand the role of the integration time for each sampling point. Finally, the model is validated by comparison with the experimental data acquired with an edge illumination setup based on a tungsten rotating anode X-ray source and a photon counting detector. RESULTS: We found a good match between the predictions of the model and the experimental data. In particular, for the investigated cases, an arrangement of the sampling points leading to minimum noise and cross-channel correlation can be found. Simulations revealed that, given a fixed overall scanning time, its distribution into the smallest possible number of sampling points needed for phase retrieval leads to minimum noise thanks to higher statistics per point. CONCLUSIONS: This work presents an analytical model describing the noise in the various contrast channels retrieved in edge illumination as a function of the illumination curve sampling. In particular, an optimal sampling scheme leading to minimum noise has been determined for the case where 3 or 5 sampling points are used, which represent two of the most common acquisition schemes. In addition, the correlation between noise in the different channels and the role of the number of points and exposure time have been also investigated. In general, our results suggest a series of procedures that should be followed in order to optimize the experimental acquisitions.


Assuntos
Iluminação , Fótons , Imagens de Fantasmas , Radiografia , Raios X
10.
Biomed Opt Express ; 12(6): 3323-3337, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221663

RESUMO

Full-wave models of OCT image formation, which are based on Maxwell's equations, are highly realistic. However, such models incur a high computational cost, particularly when modelling sample volumes consistent with those encountered in practice. Here, we present an approximate means of synthesizing volumetric image formation to reduce this computational burden. Instead of performing a full-wave scattered light calculation for each A-scan, we perform a full-wave scattered light calculation for a normally incident plane wave only. We use the angular spectrum field representation to implement beam focussing and scanning, making use of an assumption similar to the tilt optical memory effect, to approximately synthesize volumetric data sets. Our approach leads to an order of magnitude reduction in the computation time required to simulate typical B-scans. We evaluate this method by comparing rigorously and approximately evaluated point spread functions and images of highly scattering structured samples for a typical OCT system. Our approach also reveals new insights into image formation in OCT.

11.
Opt Express ; 29(14): 21603-21614, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265944

RESUMO

Fabry-Perot (FP) etalons, composed of two parallel mirrors, are used widely as optical filters and sensors. In certain applications, however, such as when FP etalons with polymer cavities are used to detect ultrasound, the mirrors may not be perfectly parallel due to manufacturing limitations. As little is known about how the mirrors being non-parallel impacts upon FP etalon performance, it is challenging to optimize the design of such devices. To address this challenge, we developed a model of light propagation in non-parallel FP etalons. The model is valid for arbitrary monochromatic beams and calculates both the reflected and transmitted beams, assuming full-wave description of light. Wavelength resolved transmissivity simulations were computed to predict the effect that non-parallel mirrors have on the sensitivity, spectral bandwidth and peak transmissivity of FP etalons. Theoretical predictions show that the impact of the non-parallel mirrors increases with both mirror reflectivity and incident Gaussian beam waist. Guidelines regarding the maximum angle allowed between FP mirrors whilst maintaining the sensitivity and peak transmissivity of a parallel mirror FP etalon are provided as a function of mirror reflectivity, cavity thickness and Gaussian beam waist. This information, and the model, could be useful for guiding the design of FP etalons suffering a known degree of non-parallelism, for example, to optimize the sensitivity of polymer based FP ultrasound sensors.

12.
Opt Express ; 29(11): 16950-16968, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154247

RESUMO

Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.

13.
Sci Rep ; 11(1): 3663, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574584

RESUMO

Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69-92%) than conventional specimen imaging (32%, 95% CI 20-49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70-92% vs 86%, 95% CI 73-93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations.


Assuntos
Neoplasias da Mama/cirurgia , Mama/cirurgia , Margens de Excisão , Mastectomia Segmentar , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Microscopia de Contraste de Fase , Radiografia , Tomografia Computadorizada por Raios X
14.
Opt Express ; 28(5): 7691-7706, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225991

RESUMO

Fabry-Pérot (FP) etalons are used as filters and sensors in a range of optical systems. Often FP etalons are illuminated by collimated laser beams, in which case the transmitted and reflected light fields can be calculated analytically using well established models. However, FP etalons are sometimes illuminated by more complex beams such as focussed Gaussian beams, which may also be aberrated. Modelling the response of FP etalons to these beams requires a more sophisticated model. To address this need, we present a model that can describe the response of an FP etalon that is illuminated by an arbitrary beam. The model uses an electromagnetic wave description of light and can therefore compute the amplitude, phase and polarization of the optical field at any position in the system. It can also account for common light delivery and detection components such as lenses, optical fibres and photo-detectors, allowing practical systems to be simulated. The model was validated against wavelength resolved measurements of transmittance and reflectance obtained using a system consisting of an FP etalon illuminated by a focussed Gaussian beam. Experiments with focal spot sizes ranging from 30 µm to 250 µm and FP etalon mirror reflectivities in the range 97.2 % to 99.2 % yielded excellent visual agreement between simulated and experimental data and an average error below 10% for a range of quantitative comparative metrics. We expect the model to be a useful tool for designing, understanding and optimising systems that use FP etalons.

15.
Opt Lett ; 44(20): 4981-4984, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613244

RESUMO

Compressive sensing can overcome the Nyquist criterion and record images with a fraction of the usual number of measurements required. However, conventional measurement bases are susceptible to diffraction and scattering, prevalent in high-resolution microscopy. In this Letter, we explore the random Morlet basis as an optimal set for compressive multiphoton imaging, based on its ability to minimize the space-frequency uncertainty. We implement this approach for wide-field multiphoton microscopy with single-pixel detection, which allows imaging through turbid media without correction. The Morlet basis promises a route for rapid acquisition with lower photodamage.

16.
J Opt Soc Am A Opt Image Sci Vis ; 36(7): 1197-1208, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503958

RESUMO

The simulation of the propagation of divergent beams using Fourier-based angular spectrum techniques can pose challenges for ensuring correct sampling in the spatial and reciprocal domains. This challenge can be compounded by the presence of diffracting objects, as is often the case. Here, I give details of a method for robustly simulating the propagation of beams with divergent wavefronts in a coordinate system where the wavefronts become planar. I also show how diffracting objects can be simulated, while guaranteeing that correct sampling is maintained. These two advances allow for numerically efficient and accurate simulations of divergent beams propagating through diffracting structures using the multi-slice approximation. The sampling requirements and numerical implementation are discussed in detail, and I have made the computer code freely available.

17.
Sci Rep ; 9(1): 12189, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434928

RESUMO

An algorithm for the simulation of two-dimensional spectral domain optical coherence tomography images based on Maxwell's equations is presented. A recently developed and modified time-harmonic numerical solution of Maxwell's equations is used to obtain scattered far fields for many wave numbers contained in the calculated spectrum. The interferometer setup with its lenses is included rigorously with Fresnel integrals and the Debye-Wolf integral. The implemented model is validated with an existing FDTD algorithm by comparing simulated tomograms of single and multiple cylindrical scatterers for perpendicular and parallel polarisation of the incident light. Tomograms are presented for different realisations of multiple cylindrical scatterers. Furthermore, simulated tomograms of a ziggurat-shaped scatterer and of dentin slabs, with varying scatterer concentrations, are investigated. It is shown that the tomograms do not represent the physical structures present within the sample.

18.
Biomed Opt Express ; 10(2): 384-398, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30800487

RESUMO

It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.

19.
Biomed Opt Express ; 9(8): 3495-3502, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338134

RESUMO

Phantoms with tuneable optical scattering properties are essential in the development and refinement of optical based imaging techniques. Mineral oil based 'gel wax' phantoms are the subject of increasing interest due to their ease and speed of manufacture, non-toxic nature, ability to cast into anatomically realistic shapes, as well as their cost-effective nature of production. The addition of scatterers such as titanium dioxide powder and monodisperse silica microspheres to the gel wax allows for the creation of phantoms with a controllable optical scattering coefficient. To enable repeated use of such phantoms, the stability of the scattering properties must be determined-a property which has yet to be investigated. We present an analysis of the stability of the reduced scattering coefficient ( µ s ' ) of such phantoms over time. We conclude that due to the measurable reduction in scattering coefficient over time, gel wax phantoms embedded with silica spheres may not be suitable for repeated use over time, however gel wax-TiO2 phantoms are much more temporally stable.

20.
J Biomed Opt ; 23(9): 1-10, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30251490

RESUMO

Vectorial models of focused beams are important to a variety of fields including microscopy, lithography, optical physics, and biomedical imaging. This has led to many models being developed, which calculate how beams of various profiles are focused both in free space and in the presence of stratified media. The majority of existing models begin with a vectorial diffraction formula, often referred to as the Debye-Wolf integral, which must be evaluated partially analytically and partially numerically. The complexity of both the analytic and numerical evaluations increases significantly when exotic beams are modeled, or, a stratified medium is located in the focal region. However, modern-day computing resources permit this integral to be evaluated entirely numerically for most applications. This allows for the development of a vectorial model of focusing in which the focusing itself, interaction with a stratified medium, and incident beam specification are independent, allowing for a model of unprecedented flexibility. We outline the theory upon which this model is developed and show examples of how the model can be used in applications including optical coherence tomography, high numerical aperture microscopy, and the properties of cylindrical vector beams. We have made the computer code freely available.


Assuntos
Simulação por Computador , Microscopia , Software , Tomografia de Coerência Óptica , Desenho de Equipamento , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA