Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(36): 24021-24040, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39247939

RESUMO

Elucidating the mechanistic role of osmolytes on conformations of hydrophobic prototypical macromolecules in principle is the stepping stone towards understanding the effect of osmolytes on proteins. Motivated by this, we use equilibrium simulations and umbrella sampling techniques to dissect the underlying mechanism of osmolyte-induced conformational stability of a hydrophobic polymer. Our results unveil a remarkable osmolyte-dependent conformational stabilization of the polymer. In an aqueous solution of 4 M choline chloride (ChCl), the polymer has an even more compact structure than in water. On the other hand, an aqueous solution of 8 M urea stabilizes the extended state of the polymer. Interestingly, the polymer adopts an intermediate hairpin conformation in a mixed osmolyte solution of 4 M ChCl and 8 M urea in water due to the interplay of ChCl and urea. Our simulations identify the relative accumulation of water and the hydrophilic part of choline or preferential binding of urea near the collapsed and the extended states, respectively. Analyses split out the enthalpic and entropic contributions to the overall free energy. This decides the stabilization of the preferred conformation in the chosen osmolyte solution. Our simulations show that in an aqueous solution of ChCl, the hairpin state is stabilized by entropy gain. In contrast, the enthalpic contribution stabilizes the hairpin state in mixed environments. However, a collapsed state is energetically not favored in the presence of urea. In brief, via employing an in silico approach, the current findings indicate the importance of osmolytes in stabilizing the conformational states of hydrophobic polymers.

2.
Chemphyschem ; 23(21): e202200446, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-35851985

RESUMO

Recent studies have reported manifold industrial applications of aqueous choline chloride (ChCl) solution as an alternative to deep eutectic solvent. ChCl also serves as a protecting co-solvent for proteins by restricting urea to approach the protein surface and thereby maintaining the water structure around the protein. However, a detailed molecular-level picture of the ChCl and water, even in the absence of urea around a representative hydrophobe is largely lacking. This motivates us to probe the effect of varying wt % of ChCl on the occupancy and orientations of the constituents around a representative solute like methane using computer simulations. Accumulation of water molecules and preferential exclusion of ChCl from the surface of methane perturb the tetrahedral geometry of water around it. We find a tangential alignment of the polar part of the ChCl molecules that interact with water, whereas its hydrophobic part is preferentially facing the methane. With an increase in ChCl wt %, a disruption in the tetrahedrality is evident for water molecules accompanied by a reduction in hydrogen bonds between water pairs in the solution. In short, ChCl induces crowding and modifies the microscopic arrangement and hydrogen bonding structure of the water around the methane and beyond.


Assuntos
Colina , Água , Água/química , Colina/química , Metano/química , Simulação de Dinâmica Molecular , Solventes/química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA