Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 459: 139949, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38986209

RESUMO

Molecular basis of rice aroma formation is sparsely known and developmental programs driving biochemical pathways towards aroma is in infancy. Here, discovery and targeted proteo-metabolome of non-aromatic and aromatic rice seeds across developmental stages identified a total of 442 aroma-responsive proteins (ARPs) and 824 aroma-responsive metabolites (ARMs) involved in metabolism, calcium and G-protein signaling. Biochemical examination revealed ARM/Ps were linked to 2-acetylpyrrolidine, γ-aminobutyrate, anthocyanin, tannins, flavonoids and related enzymes. Pairwise correlation and clustering showed positive correlation among ARM/Ps. Consistent with aroma-related QTLs, ARPs were mapped on chromosomes 3,4,5,8 and were mainly compartmentalized in cytoplasm and mitochondria. ARM/P-correlation network identified associations related to metabolism and signaling. Multiple reaction monitoring (MRM) confirmed role of catechins, quinic acid and quercetin in aroma formation. Pathway enrichment, multivariate analysis and qRT-PCR validated that calcium and G-protein signaling, aromatic/branched-chain aminoacid, 2-acetylpyrrolidine, oxylipin, melvonate and prenylpyrophosphate pathways, indole, phenylacetate, flavonoid, cinnamoic ester govern aroma formation in rice.


Assuntos
Odorantes , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/química , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Odorantes/análise , Redes e Vias Metabólicas , Genótipo , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Organelas/metabolismo , Organelas/genética , Organelas/química
2.
Plant Cell Environ ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825969

RESUMO

Molecular communication between macromolecules dictates extracellular matrix (ECM) dynamics during pathogen recognition and disease development. Extensive research has shed light on how plant immune components are activated, regulated and function in response to pathogen attack. However, two key questions remain largely unresolved: (i) how does ECM dynamics govern susceptibility and disease resistance, (ii) what are the components that underpin these phenomena? Rice blast, caused by Magnaporthe oryzae adversely affects rice productivity. To understand ECM regulated genotype-phenotype plasticity in blast disease, we temporally profiled two contrasting rice genotypes in disease and immune state. Morpho-histological, biochemical and electron microscopy analyses revealed that increased necrotic lesions accompanied by electrolyte leakage governs disease state. Wall carbohydrate quantification showed changes in pectin level was more significant in blast susceptible compared to blast resistant cultivar. Temporally resolved quantitative disease- and immune-responsive ECM proteomes identified 308 and 334 proteins, respectively involved in wall remodelling and integrity, signalling and disease/immune response. Pairwise comparisons between time and treatment, messenger ribonucleic acid expression, diseasome and immunome networks revealed novel blast-related functional modules. Data demonstrated accumulation of α-galactosidase and phosphatase were associated with disease state, while reactive oxygen species, induction of Lysin motif proteins, CAZymes and extracellular Ca-receptor protein govern immune state.

3.
J Proteome Res ; 23(8): 3217-3234, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38572503

RESUMO

The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).


Assuntos
Sinalização do Cálcio , Parede Celular , Matriz Extracelular , Doenças das Plantas , Parede Celular/metabolismo , Matriz Extracelular/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Proteômica/métodos , Metaboloma , Proteoma/metabolismo , Proteoma/análise , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Metabolômica/métodos
4.
Plant Direct ; 8(3): e572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500675

RESUMO

Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.

5.
Proteomics ; 20(8): e1900267, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146728

RESUMO

Nutrient dynamics in storage organs is a complex developmental process that requires coordinated interactions of environmental, biochemical, and genetic factors. Although sink organ developmental events have been identified, understanding of translational and post-translational regulation of reserve synthesis, accumulation, and utilization in legumes is limited. To understand nutrient dynamics during embryonic and cotyledonary photoheterotrophic transition to mature and germinating autotrophic seeds, an integrated proteomics and phosphoproteomics study in six sequential seed developmental stages in chickpea is performed. MS/MS analyses identify 109 unique nutrient-associated proteins (NAPs) involved in metabolism, storage and biogenesis, and protein turnover. Differences and similarities in 60 nutrient-associated phosphoproteins (NAPPs) containing 93 phosphosites are compared with NAPs. Data reveal accumulation of carbon-nitrogen metabolic and photosynthetic proteoforms during seed filling. Furthermore, enrichment of storage proteoforms and protease inhibitors is associated with cell expansion and seed maturation. Finally, combined proteoforms network analysis identifies three significant modules, centered around malate dehydrogenase, HSP70, triose phosphate isomerase, and vicilin. Novel clues suggest that ubiquitin-proteasome pathway regulates nutrient reallocation. Second, increased abundance of NAPs/NAPPs related to oxidative and serine/threonine signaling indicates direct interface between redox sensing and signaling during seed development. Taken together, nutrient signals act as metabolic and differentiation determinant governing storage organ reprogramming.


Assuntos
Cicer/metabolismo , Fosfoproteínas/análise , Proteínas de Plantas/análise , Sementes/fisiologia , Carbono/metabolismo , Cicer/crescimento & desenvolvimento , Cicer/fisiologia , Enzimas/metabolismo , Germinação , Nitrogênio/metabolismo , Oxirredução , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais
6.
Plant J ; 103(2): 561-583, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170889

RESUMO

Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.


Assuntos
Quitosana/metabolismo , Cicer/imunologia , Matriz Extracelular/fisiologia , Fusarium , Doenças das Plantas/imunologia , Estômatos de Plantas/fisiologia , Metabolismo dos Carboidratos , Cicer/metabolismo , Cicer/microbiologia , Interações Hospedeiro-Patógeno , Metaboloma , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteoma , Plântula/imunologia , Plântula/microbiologia
7.
Methods Mol Biol ; 2057: 155-172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595478

RESUMO

Understanding molecular mechanisms and cellular metabolism in varied plant processes necessitates knowledge of the expressed proteins and their subcellular distribution. Spatial partitioning of organelles generates an enclosed milieu for physiochemical reactions designed and tightly linked to a specific organelle function. Of which, extracellular matrix (ECM)/cell wall (CW) is a dynamic and chemically active compartment. The ECM proteins are organized into complex structural and functional networks involved in several metabolic processes, including carbon and nitrogen metabolism. Organellar proteomics aim for comprehensive identification of resident proteins that rely on the isolation of highly purified organelle free from contamination by other intracellular components. Extraction and isolation of plant ECM proteins features key caveats due to the lack of adjoining membrane, the presence of a polysaccharide-protein network that traps contaminants, and the existence of high phenolic content. Furthermore, due to diverse biochemical forces, including labile, weakly bound and strongly bound protein in the protein-polysaccharide matrix different elution procedures are required to enrich ECM proteins. Here, we describe a method that allows efficient fractionation of plant ECM, extraction of ECM proteins and protein profiling from variety of crop plants, including rice, chickpea and potato. This method can easily be adapted to other plant species for varied experimental conditions.


Assuntos
Cicer/metabolismo , Eletroforese em Gel Bidimensional/métodos , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Cicer/enzimologia , Proteínas da Matriz Extracelular/isolamento & purificação , Microscopia , Plântula/enzimologia , Plântula/metabolismo , Espectrometria de Massas em Tandem , Fluxo de Trabalho
8.
Proteomics ; 19(3): e1800188, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468014

RESUMO

Modulation of plant immune system by extrinsic/intrinsic factors and host-specific determinants fine-tunes cellular components involving multiple organelles, particularly nucleus to mount resistance against pathogen attack. Rice blast, caused by hemibiotrophic fungus Magnaporthe oryzae, is one of the most devastating diseases that adversely affect rice productivity. However, the role of nuclear proteins and their regulation in response to M. oryzae remains unknown. Here, the nucleus-associated immune pathways in blast-resistant rice genotype are elucidated. Temporal analysis of nuclear proteome is carried out using 2-DE coupled MS/MS analysis. A total of 140 immune responsive proteins are identified associated with nuclear reorganization, cell division, energy production/deprivation, signaling, and gene regulation. The proteome data are interrogated using correlation network analysis that identified significant functional modules pointing toward immune-related coinciding processes through a common mechanism of remodeling and homeostasis. Novel clues regarding blast resistance include nucleus-associated redox homeostasis and glycolytic enzyme-mediated chromatin organization which manipulates cell division and immunity. Taken together, the study herein provides evidence that the coordination of nuclear function and reprogramming of host translational machinery regulate resistance mechanism against blast disease.


Assuntos
Magnaporthe/imunologia , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Transdução de Sinais , Espectrometria de Massas em Tandem
9.
Sci Rep ; 8(1): 6528, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695764

RESUMO

Host specific resistance and non-host resistance are two plant immune responses to counter pathogen invasion. Gene network organizing principles leading to quantitative differences in resistant and susceptible host during host specific resistance are poorly understood. Vascular wilt caused by root pathogen Fusarium species is complex and governed by host specific resistance in crop plants, including chickpea. Here, we temporally profiled two contrasting chickpea genotypes in disease and immune state to better understand gene expression switches in host specific resistance. Integrative gene-regulatory network elucidated tangible insight into interaction coordinators leading to pathway determination governing distinct (disease or immune) phenotypes. Global network analysis identified five major hubs with 389 co-regulated genes. Functional enrichment revealed immunome containing three subnetworks involving CTI, PTI and ETI and wilt diseasome encompassing four subnetworks highlighting pathogen perception, penetration, colonization and disease establishment. These subnetworks likely represent key components that coordinate various biological processes favouring defence or disease. Furthermore, we identified core 76 disease/immunity related genes through subcellular analysis. Our regularized network with robust statistical assessment captured known and unexpected gene interaction, candidate novel regulators as future biomarkers and first time showed system-wide quantitative architecture corresponding to genotypic characteristics in wilt landscape.


Assuntos
Cicer/genética , Cicer/imunologia , Redes Reguladoras de Genes/genética , Imunidade Vegetal/genética , Transcriptoma/genética , Cicer/microbiologia , Fusarium/imunologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/imunologia , Genes de Plantas/genética , Genes de Plantas/imunologia , Genótipo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Transcriptoma/imunologia
10.
Proteomics ; 17(23-24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29144021

RESUMO

Extracellular matrix (ECM) is the unique organelle that perceives stress signals and reprograms molecular events of host cell during patho-stress. However, our understanding of how ECM dictates plant immunity is largely unknown. Vascular wilt caused by the soil borne filamentous fungus Fusarium oxysporum is a major impediment for global crop productivity. To elucidate the role of ECM proteins and molecular mechanism associated with cell wall mediated immunity, the temporal changes of ECM proteome was studied in vascular wilt resistant chickpea cultivar upon F. oxysporum infection. The 2DE protein profiling coupled with mass spectrometric analysis identified 166 immune responsive proteins (IRPs) involved in variety of functions. Our data suggest that wall remodeling; protein translocation, stabilization, and chitin triggered immunity; and extracellular ATP signaling are major players in early, middle, and later phases of ECM signaling during fungal attack. Furthermore, we interrogated the proteome data using network analysis that identified modules enriched in known and novel immunity-related prognostic proteins centered around nascent aminopolypeptide complex (NAC), amine oxidase, thioredoxin, and chaperonin. This study for the first time provides an insight into the complex network operating in the ECM and impinges on the surveillance mechanism of innate immunity during patho-stress in crop plant.


Assuntos
Parede Celular/imunologia , Cicer/imunologia , Proteínas da Matriz Extracelular/metabolismo , Fusarium/fisiologia , Doenças das Plantas/imunologia , Proteômica/métodos , Parede Celular/metabolismo , Parede Celular/microbiologia , Cicer/citologia , Cicer/metabolismo , Cicer/microbiologia , Proteínas da Matriz Extracelular/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Doenças das Plantas/microbiologia , Proteínas de Plantas/análise , Proteínas de Plantas/imunologia , Proteoma/metabolismo
11.
Cell Death Discov ; 3: 17073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152379

RESUMO

Although precisely controlled innate immune response is governed by conserved cellular events in phylogenetically diverse hosts, the underlying molecular mechanisms by which this process is regulated against a multi-host pathogen remain unknown. Fusarium oxysporum is a model multi-host pathogen, known to be associated with neuronal stress in humans and vascular wilt in plants. The interaction between innate immune and neuronal pathways is the basis of many diverse biological responses. How these processes are coordinated in response to fungal disease is not well understood. Here, we show that F. oxysporum f. sp. ciceri causes neuronal stress and intestinal disintegration, ultimately leading to the death of Caenorhabditis elegans. To explore the regulatory framework of Fusarium-associated disease, we analysed the gene expression during infection, integrated temporal gene expression, and network analysis with genetic inactivation data in Caenorhabditis elegans. We identified 1024 genes showing significant changes in expression (corrected P-values <0.05) in response to Fusarium infection. Co-expression network analysis of our data identified prognostic genes related to disease progression. These genes were dynamically expressed in various neuronal and non-neuronal tissues exhibiting diverse biological functions, including cellular homeostasis, organ patterning, stress response, and lipid metabolism. The RNA-seq analysis further identified shared and unique signalling pathways regulated by DAF-16/FOXO and SIR-2.1 linking neuronal stress, which facilitates negative regulation of intestinal innate immunity. Genetic analysis revealed that GCY-5 in ASE functions upstream of DAF-16, whereas ASI-specific SRD-1 regulates behavioural immunity. Overall, our results indicate that a ubiquitous response occurs during Fusarium infection mediated by highly conserved regulatory components and pathways, which can be exploited further for the identification of disease-responsive genes conserved among animals and plants. Finally, this study provided a novel insight into cross-species immune signalling and may facilitate the discovery of cellular therapeutic targets for Fusarium-associated disease.

12.
Proteomics ; 17(23-24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28961394

RESUMO

Plants exposed to patho-stress mostly succumb due to disease by disruption of cellular integrity and changes in the composition of the extracellular matrix (ECM). Vascular wilt, caused by the soil borne hemibiotrophic filamentous fungus Verticillium dahliae, is one of the most significant diseases that adversely affect plant growth and productivity. The virulence of the pathogen associated with the ECM-related susceptibility of the host plant is far from being understood. To better understand ECM-associated disease responses that allow the pathogen to suppress plant immunity, a temporal analysis of ECM proteome was carried out in vascular wilt susceptible potato cultivar upon V. dahliae infection. The proteome profiling led to the identification of 75 patho-stress responsive proteins (PSRPs), predominantly involved in wall hydration, architecture, and redox homeostasis. Two novel clues regarding wilt disease of potato were gained from this study. First, wall crosslinking and salicylic acid signaling significantly altered during patho-stress. Second, generation of reactive oxygen species and scavenging proteins increased in abundance leading to cell death and necrosis of the host. We provide evidence for the first time that how fungal invasion affects the integrity of ECM components and host reprogramming for susceptibility may function at the cell surface by protein plasticity.


Assuntos
Matriz Extracelular/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum , Verticillium/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
13.
Front Plant Sci ; 7: 1147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555852

RESUMO

Fruits of angiosperms evolved intricate regulatory machinery for sensorial attributes and storage quality after harvesting. Organic acid composition of storage organs forms the molecular and biochemical basis of organoleptic and nutritional qualities with metabolic specialization. Of these, oxalic acid (OA), determines the post-harvest quality in fruits. Tomato (Solanum lycopersicum) fruit has distinctive feature to undergo a shift from heterotrophic metabolism to carbon assimilation partitioning during storage. We have earlier shown that decarboxylative degradation of OA by FvOXDC leads to acid homeostasis besides increased fungal tolerance in E8.2-OXDC tomato. Here, we elucidate the metabolic consequences of oxalate down-regulation and molecular mechanisms that determine organoleptic features, signaling and hormonal regulation in E8.2-OXDC fruit during post-harvest storage. A comparative proteomics approach has been applied between wild-type and E8.2-OXDC tomato in temporal manner. The MS/MS analyses led to the identification of 32 and 39 differentially abundant proteins associated with primary and secondary metabolism, assimilation, biogenesis, and development in wild-type and E8.2-OXDC tomatoes, respectively. Next, we interrogated the proteome data using correlation network analysis that identified significant functional hubs pointing toward storage related coinciding processes through a common mechanism of function and modulation. Furthermore, physiochemical analyses exhibited reduced oxalic acid content with concomitant increase in citric acid, lycopene and marginal decrease in malic acid in E8.2-OXDC fruit. Nevertheless, E8.2-OXDC fruit maintained an optimal pH and a steady state acid pool. These might contribute to reorganization of pectin constituent, reduced membrane leakage and improved fruit firmness in E8.2-OXDC fruit with that of wild-type tomato during storage. Collectively, our study provides insights into kinetically controlled protein network, identified regulatory module for pathway formulation and provide basis toward understanding the context of storage quality maintenance as a consequence of oxalate downregulation in the sink organ.

14.
Front Plant Sci ; 7: 1034, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507973

RESUMO

Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ.

15.
J Proteomics ; 143: 242-253, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27153761

RESUMO

UNLABELLED: Oxalic acid (OA) plays dual role in fungal pathogenicity in a concentration dependent manner. While at higher concentration it induces programmed cell death leading to fungal invasion, low oxalate build resistance in plant. Although OA has been identified as a virulence determinant for rot disease caused by Sclerotinia sp., our understanding of how oxalate downregulation impart host immunity is limited. We have earlier shown that ectopic expression of oxalate decarboxylase (FvOXDC) specifically degrades OA in tomato (Solanum lycopersicum). To elucidate low oxalate regulated molecular mechanism imparting immunity, a comparative proteomics approach has been applied to E8.2-OXDC tomato fruit displaying fungal resistance. Mass spectrometric analyses identified 92 OXDC-responsive immunity related protein spots (ORIRPs) presumably associated with acid metabolism, defense signaling and endoplasmic reticulum stress. Metabolome study indicated increased abundance of some of the organic acids paralleling the proteomic analysis. Further, we interrogated the proteome data using network analysis that identified modules enriched in known and novel immunity-related prognostic proteins centered around 14-3-3, translationally controlled tumor protein, annexin and chaperonin. Taken together, our data demonstrate that low oxalate may act as metabolic and immunity determinant through translational reprogramming. BIOLOGICAL SIGNIFICANCE: Although OA plays critical role as fungal elicitor, our understanding of how oxalate downregulation by decarboxylative degradation impart immunity is limited. Our study confirms the impact of oxalate down-regulation on overall cellular physiology and provides new perspectives to study plant immunity. The network representation may facilitate the prioritization of candidate proteins for patho-stress tolerance in crop plant. These findings are of great importance for future work towards functional determination and exploitation of target proteins in crop improvement program.


Assuntos
Ascomicetos/imunologia , Carboxiliases/genética , Plantas Geneticamente Modificadas/imunologia , Solanum lycopersicum/genética , Ascomicetos/efeitos dos fármacos , Carboxiliases/metabolismo , Carboxiliases/farmacologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Metabolômica , Ácido Oxálico/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Proteoma/análise , Proteoma/imunologia , Proteômica , Transgenes
16.
Proteomes ; 4(3)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28248230

RESUMO

The extracellular matrix (ECM) has a molecular machinery composed of diverse proteins and proteoforms that combine properties of tensile strength with extensibility exhibiting growth-regulatory functions and self- and non-self-recognition. The identification of ECM proteoforms is the prerequisite towards a comprehensive understanding of biological functions accomplished by the outermost layer of the cell. Regulatory mechanisms of protein functions rely on post-translational modifications, phosphorylation in particular, affecting enzymatic activity, interaction, localization and stability. To investigate the ECM proteoforms, we have isolated the cell wall proteome and phosphoproteome of a tuberous crop, potato (Solanum tuberosum). LC-MS/MS analysis led to the identification of 38 proteins and 35 phosphoproteins of known and unknown functions. The findings may provide a better understanding of biochemical machinery and the integrated protein and phosphoprotein network of ECM for future functional studies of different developmental pathways and guidance cues in mechanosensing and integrity signaling.

17.
J Proteomics ; 127(Pt A): 34-43, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25920368

RESUMO

In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. BIOLOGICAL SIGNIFICANCE: The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Proteômica/tendências , Humanos , Índia
18.
J Proteome Res ; 12(11): 4904-30, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24024778

RESUMO

Seed storage proteins are known to be utilized as carbon and nitrogen source for growing seedlings and thus are considered as potential candidates for nutritional improvement. However, their precise function remains unknown. We have earlier shown that ectopic expression of a seed storage protein, AmA1, leads to increase in protein besides high tuber yield in potato. To elucidate the AmA1-regulated molecular mechanism affecting increased protein synthesis, reserve accumulation, and enhanced growth, a comparative proteomics approach has been applied to tuber life-cycle between wild-type and AmA1 potato. The differential display of proteomes revealed 150 AmA1-responsive protein spots (ARPs) that change their intensities more than 2.5-fold. The LC-ESI-MS/MS analyses led to the identification of 80 ARPs presumably associated with cell differentiation, regulating diverse functions, viz., protein biogenesis and storage, bioenergy and metabolism, and cell signaling. Metabolome study indicated up-regulation of amino acids paralleling the proteomics analysis. To validate this, we focused our attention on anatomical study that showed differences in cell size in the cortex, premedullary zone and pith of the tuber, coinciding with AmA1 expression and localization. Further, we interrogated the proteome data using one-way analysis of variance, cluster, and partial correlation analysis that identified two significant protein modules and six small correlation groups centered around isoforms of cysteine protease inhibitor, actin, heat shock cognate protein 83 and 14-3-3, pointing toward AmA1-regulated overlapping processes of protein enhancement and cell growth perhaps through a common mechanism of function. A model network was constructed using the protein data sets, which aim to show how target proteins might work in coordinated fashion and attribute to increased protein synthesis and storage reserve accumulation in AmA1 tubers on one hand and organ development on the other.


Assuntos
Biossíntese de Proteínas/genética , Proteômica/métodos , Proteínas de Armazenamento de Sementes/metabolismo , Plântula/crescimento & desenvolvimento , Solanum tuberosum/genética , Análise de Variância , Proliferação de Células , Cromatografia Líquida , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Metabolômica/métodos , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/genética , Solanum tuberosum/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
19.
Front Plant Sci ; 4: 100, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637696

RESUMO

Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10-20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect.

20.
Plant Physiol ; 162(1): 364-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23482874

RESUMO

The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value.


Assuntos
Carboxiliases/genética , Flammulina/genética , Proteínas de Plantas/isolamento & purificação , Transdução de Sinais , Solanum lycopersicum/metabolismo , Carboxiliases/metabolismo , Regulação para Baixo , Flammulina/enzimologia , Frutas/genética , Frutas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Especificidade de Órgãos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA