Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1347370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361747

RESUMO

The present work reports the influence of the presence of different ions (Cl-, Br-, NO3 -, or SO4 2-) on the formation and proprieties of Cu(II) complexes with pyridoxal-benzoylhydrazone (PLBHZ). Four new complexes were successfully synthesized, [CuCl2(PLBHZ)] (1), [CuBr2(PLBHZ)] (2), [CuCl(PLBHZ)H2O]⋅NO3⋅H2O (3), and [CuSO4(PLBHZ)H2O]⋅3H2O (4), and characterized by spectroscopic and physicochemical methods. A single-crystal X-ray study reveals the Schiff base coordinated to the metal center tridentate by the ONS-donor system, resulting in distorted square pyramidal coordination geometries. Noncovalent interactions were investigated by 3D Hirshfeld surface analysis by the d norm function, 2D fingerprint plots, and full interaction maps. The ion exchange is important in forming three-dimensional networks with π⋅⋅⋅π stacking interactions and intermolecular hydrogen bonds. The in vitro biological activity of the free ligand and metal complexes was evaluated against Gram-positive and Gram-negative bacterial strains and the free pyridoxal-hydrazone ligand showed higher activity than their Cu(II) complexes. Molecular docking was used to predict the inhibitory activity of the ligand and complexes against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria.

2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894797

RESUMO

Understanding the role of 3CLpro protease for SARS-CoV-2 replication and knowing the potential of flavonoid molecules like rutin, myricetin, and baicalein against 3CLpro justify an investigation into their inhibition. This study investigates possible bonds and reactivity descriptors of rutin, myricetin, and baicalein through conformational and electronic properties. Density functional theory was used to determine possible interactions. Analyses were carried out through the molecular electrostatic potential, electron localization function, Fukui function descriptors based on frontier orbitals, and non-covalent interactions. A docking study was performed using a resolution of 1.55 Å for 3CLpro to analyze the interactions of rutin, myricetin, and baicalein. Scores of structures showed that rutin is the best ligand, followed by myricetin and baicalein. Docking studies showed that baicalein and rutin can establish effective interactions with residues of the catalytic dyad (Cys145 and His41), but just rutin forms a hydrogen bond. Myricetin, in turn, could not establish an effective interaction with Cys145. Baicalein interaction arose with active residues such as Arg188, Val186, Gln189, and Gln192. Interactions of rutin and myricetin with Arg188 and Gln189 were also found. A critical interaction was observed only for rutin with the hydroxyls of ring A with His41, and also for Cys145 with rings B and C, which is probably related to the highest score of rutin.


Assuntos
Flavanonas , Rutina , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Antivirais/farmacologia
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511201

RESUMO

The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Simulação de Acoplamento Molecular , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Paládio/farmacologia , Paládio/química , Ouro/química , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estrutura Molecular , Cristalografia por Raios X , Antineoplásicos/química
4.
Front Mol Biosci ; 10: 1146820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968279

RESUMO

In the search for new metal complexes with antitumor potential, two dithiocarbazate ligands derived from 1,1,1-trifluoro-2,4-pentanedione (H2L1) and (H2L2) and four Ni(II) complexes, [Ni(L1)PPh3] (1), [Ni(L1)Py] (2), [Ni(L2)PPh3] (3), and [Ni(L2)Py] (4), were successfully synthesized and investigated by physical-chemistry and spectroscopic methods. The crystal structure of the H2L1 and the Ni(II) complexes has been elucidated by single-crystal X-ray diffraction. The obtained structure from H2L1 confirms the cyclization reaction and formation of the pyrazoline derivative. The results showed square planar geometry to the metal centers, in which dithiocarbazates coordinated by the ONS donor system and a triphenylphosphine or pyridine molecule complete the coordination sphere. Hirshfeld surface analysis by d norm function was investigated and showed π-π stacking interactions upon the molecular packing of H2L1 and non-classical hydrogen bonds for all compounds. Fingerprint plots showed the main interactions attributed to H⋅H C⋅H, O⋅H, Br⋅H, and F⋅H, with contacts contributing between 1.9% and 38.2%. The mass spectrometry data indicated the presence of molecular ions [M + H]+ and characteristic fragmentations of the compounds, which indicated the same behavior of the compounds in solution and solid state. Molecular docking simulations were studied to evaluate the properties and interactions of the free dithiocarbazates and their Ni(II) complexes with selected proteins and DNA. These results were supported by in vitro cytotoxicity assays against four cancer cell lines, showing that the synthesized metal complexes display promising biological activity.

5.
J Mol Model ; 28(9): 252, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947248

RESUMO

Alzheimer disease (AD) is a neurodegenerative process, one of the most common and incident dementia in the population over 60 years. AD manifests the presence of complex biochemical processes involved in neuronal degeneration, such as the formation of senile plaques containing amyloid-ß peptides, the development of intracellular neurofibrillary tangles, and the suppression of the acetylcholine neurotransmitter. In this way, we performed a set of theoretical tests of tacrine ligand and acetylcholine neurotransmitter against the human acetylcholinesterase enzyme. Molecular docking was used to understand the most important interactions of these molecules with the enzyme. Computational chemistry calculation was carried out using MP2, DFT, and semi-empirical methods, starting from molecular docking structures. We have also performed studies regarding the non-covalent interactions, electron localization function, molecular electrostatic potential and explicit water molecule influence. For Trp86 residue, we show two main interactions in accordance to the results of the literature for TcAChE. First, intermolecular interactions of the cation-π and sigma-π type were found. Second, close stacking interactions were stablished between THA+ and Trp86 residue on one side and with Tyr337 residue on the other side.


Assuntos
Doença de Alzheimer , Tacrina , Acetilcolina , Acetilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Eletrônica , Humanos , Simulação de Acoplamento Molecular , Tacrina/química
6.
J Biomol Struct Dyn ; 40(20): 9774-9788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34121617

RESUMO

In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Proteínas de Fusão bcr-abl , Pirimidinas/farmacologia , Eletrônica , Mutação
7.
J Mol Model ; 27(10): 309, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599372

RESUMO

Chronic myeloid leukemia (CML) is a pathological condition associated with the uncontrolled proliferation of white blood cells and respective loss of function. Imatinib was the first drug that could effectively treat this condition, but its use is hindered by the development of mutations of the BCR-ABL protein, which are the cause of resistance. Therefore, dasatinib and afatinib present similarities that can be explored to discover new molecules capable of overcoming the effects of imatinib. Afatinib exhibited electronic and docking behavior, indicating that a replacement with some minor modifications could design a new potential inhibitor. The amide group in each candidate is clearly of pharmacophoric importance, and it needs to concentrate a negative region. Sulfur group presents a good pharmacophoric profile, which was shown by dasatinib results, adding to the influence of the Met318 residue in the target protein active site configuration. This behavior suggests that the sulfur atom and other fragments that have an affinity for the methionine sidechain may provide a significant positive effect when present in TKI molecules such as afatinib or dasatinib.


Assuntos
Afatinib/química , Dasatinibe/química , Proteínas de Fusão bcr-abl/química , Afatinib/metabolismo , Afatinib/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Domínio Catalítico , Dasatinibe/metabolismo , Dasatinibe/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/metabolismo , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Metionina/química , Simulação de Acoplamento Molecular , Mutação , Teoria Quântica , Enxofre/química
8.
J Comput Aided Mol Des ; 32(5): 607-622, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29582230

RESUMO

In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.


Assuntos
Acetilcolinesterase/química , Alcaloides/química , Inibidores da Colinesterase/química , Simulação de Dinâmica Molecular , Sesquiterpenos/química , Tacrina/análogos & derivados , Tacrina/química , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Termodinâmica
9.
J Chem Inf Model ; 57(4): 958-976, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28406297

RESUMO

In the present study, the binding free energy of some classical inhibitors (DMT, DNP, GNT, HUP, THA) with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation (FEP) method based on hybrid quantum mechanics and molecular mechanics (QM/MM) potentials. The results highlight the key role of the van der Waals interaction for the inhibition process, since the contribution of this term to the binding free energy is almost as decisive as the electrostatic one. The analysis of the geometrical parameters and the interaction energy per residue along the QM/MM molecular dynamics (MD) simulations highlights the most relevant interactions in the different AChE-ligand systems, showing that the charged residues with a more prominent contribution to the interaction energy are Asp72 and Glu199, although the relative importance depends on the molecular size of the ligand. A correlation between the binding free energy and the number of cation-π interactions present in the systems has been established, DMT being the most potent inhibitor, capable of forming four cation-π interactions. A layer of water molecules surrounding the inhibitors has been observed, which act as bridges along a network formed by the ligands and the residues of the gorge and also between different residues. Although several hydrogen bonds between ligands and AChE do appear, no significant values of BIEs have been recorded. This behavior can be accounted for by the special features of AChE, such as the presence of several subsites of different natures in the gorge or the existence of several water molecules that act as bridges in the electrostatic interactions.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Simulação de Dinâmica Molecular , Teoria Quântica , Acetilcolinesterase/química , Ligação de Hidrogênio , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...