Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1320: 343022, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142773

RESUMO

BACKGROUND: Real-time monitoring of food consumer quality remains challenging due to diverse bio-chemical processes taking place in the food matrices, and hence it requires accurate analytical methods. Thresholds to determine spoiled food are often difficult to set. The existing analytical methods are too complicated for rapid in situ screening of foodstuff. RESULTS: We have studied the dynamics of meat spoilage by electronic nose (e-nose) for digitizing the smell associated with volatile spoilage markers of meat, comparing the results with changes in the microbiome composition of the spoiling meat samples. We apply the time series analysis to follow dynamic changes in the gas profile extracted from the e-nose responses and to identify the change-point window of the meat state. The obtained e-nose features correlate with changes in the microbiome composition such as increase in the proportion of Brochothrix and Pseudomonas spp. and disappearance of Mycoplasma spp., and with representative gas sensors towards hydrogen, ammonia, and alcohol vapors with R2 values of 0.98, 0.93, and 0.91, respectively. Integration of e-nose and computer vision into a single analytical panel improved the meat state identification accuracy up to 0.85, allowing for more reliable meat state assessment. SIGNIFICANCE: Accurate identification of the change-point in the meat state achieved by digitalizing volatile spoilage markers from the e-nose unit holds promises for application of smart miniaturized devices in food industry.


Assuntos
Bactérias , Nariz Eletrônico , Bactérias/isolamento & purificação , Carne/microbiologia , Carne/análise , Microbiota , Animais , Qualidade dos Alimentos , Microbiologia de Alimentos
2.
Lab Chip ; 24(16): 3810-3825, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39016307

RESUMO

This study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol-gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features. While synthesis routes foster diversity in material properties, microplotter printing ensures targeted precision in making on-chip arrays for evaluation of a combinatorial selectivity concept in the task of organic vapor, like alcohol homologs, acetone, and benzene, classification. The synthesized nanomaterials demonstrate a high chemiresistive response, with a limit of detection beyond ppm level. A specific combination of materials is demonstrated to be relevant when the number of sensors is low; however, such importance diminishes with an increase in the number of sensors. We show that on-chip material combinations could favor selectivity to a specific analyte, disregarding the others. Hence, modern synthesis methods and printing protocols supported by combinatorial analysis might pave the way for fabricating on-chip orthogonal multisensor systems.

3.
Adv Sci (Weinh) ; : e2404694, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082235

RESUMO

The lattice geometry of natural materials and the structural geometry of artificial materials are crucial factors determining their physical properties. Most materials have predetermined geometries that lead to fixed physical characteristics. Here, the demonstration of a carbon nanotube network serves as an example of a system with controllable orientation achieving on-demand optical properties. Such a network allows programming their optical response depending on the orientation of the constituent carbon nanotubes and leads to the switching of its dielectric tensor from isotropic to anisotropic. Furthermore, it also allows for the achievement of wavelength-dispersion for their principal optical axes - a recently discovered phenomenon in van der Waals triclinic crystals. The results originate from two unique carbon nanotubes features: uniaxial anisotropy from the well-defined cylindrical geometry and the intersection interaction among individual carbon nanotubes. The findings demonstrate that shaping the relative orientations of carbon nanotubes or other quasi-one-dimensional materials of cylindrical symmetry within a network paves the way to a universal method for the creation of systems with desired optical properties.

4.
ACS Mater Au ; 3(4): 337-350, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38090127

RESUMO

We demonstrate that the power conversion efficiency (PCE), photocurrent, and fill factor (FF) of perovskite solar cells (PSC) can be significantly improved by the photoinduced self-gating in ionic liquids (ILs) via n-doping of the carbon nanotube (CNT) top electrode on the fullerene electron transport layer (ETL). CNTs, graphene, and other carbon electrodes have been proven to be stable electrodes for PSC, but efficiency was not high. We have previously shown that the performance of PSCs with CNT electrodes can be improved by IL gating with gate voltage (Vg) applied from an external power source. Here we demonstrate that effective self-gating in ILs is possible by a photoinduced process, without an external source. The open circuit voltage (Voc) generated by the PSC itself can be applied to the CNT/C60 electrode as Vg leading to photogating. This self-gating with Voc is compared to photocharging of CNTs in ILs without any gating for two types of fullerene ETLs: C60 and C70, Two types of ILs, DEME-TFSI and BMIM-BF4, are tested for two types of nanotubes electrodes: single wall (SWCNT), and multiwall (MWCNT). The resulting improvements are analyzed using the effective diode-circuit (DC) and the drift-diffusion (DD) models. Self-gating allows the PCE improvement from 3-5% to 10-11% for PSCs with a thick ETL, while for optimal combination of a thin SWCNT/ETL with added layers for improved stability, the PCE reached 13.2% in DEME-TFSI IL.

5.
Nanoscale ; 15(47): 19351-19358, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38013470

RESUMO

Single-walled carbon nanotubes (SWCNTs) are considered to be promising material platforms for various photodetectors (including phototransistors) due to their unique optoelectrical properties (e.g., high mobility and a wide variety of bandgap values). Herein, we present highly sensitive phototransistors which utilised sparse networks of SWCNTs on a silicon/silica substrate and operated by means of the photogating effect. The response of SWCNTs to photo-induced electrostatic charges (photogating effect) was highly dependent on the conductivity type of the channel, which was "metallic" or "semiconducting", depending on the SWCNT density. We determined the performance of these transistors depending on the characteristics of the substrate and conductivity type of the SWCNT channel. The optimized configuration of phototransistors with a channel comprising a sparse network of SWCNTs permitted improvement in the specific detectivity and relative response compared with previously reported photodetectors based on graphene and carbon nanotubes. We demonstrated an absolute responsivity of ∼60 A W-1 at an incident light power of ∼2 nW, specific detectivity of 7.8 × 1011 cm·Hz1/2 W-1, and response time of 300 µs. These data revealed the high potential of photogating-based SWCNTs detectors for extremely weak signals with a high signal-to-noise ratio.

6.
RSC Adv ; 13(37): 25817-25827, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655361

RESUMO

Composites comprising vanadium-pentoxide (V2O5) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, etc. We propose a novel, simple, and facile approach for SWCNT covering with V2O5 by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.8 eV. The material recrystallizes after thermal treatment at 600 °C, achieving the work function of 5.8 eV. The key advantages of the method are that the obtained coating is uniform with a tunable thickness and does not require vacuuming or heating during processing. We demonstrate the groundbreaking results for two V2O5/SWCNT applications: transparent electrode and cathode for Li-ion batteries. As a transparent electrode, the composite shows stable sheet resistance of 160 Ω sq-1 at a 90% transmittance (550 nm) - the best performance reported for SWCNTs doped by metal oxides. As a cathode material, the obtained specific capacity (330 mA h g-1) is the highest among all the other V2O5/SWCNT cathodes reported so far. This approach opens new horizons for the creation of the next generation of metal oxide composites for various applications, including optoelectronics and electrochemistry.

7.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630892

RESUMO

The integration of low-dimensional materials with optical waveguides presents promising opportunities for enhancing light manipulation in passive photonic circuits. In this study, we investigate the potential of aerosol-synthesized single-walled carbon nanotube (SWCNT) films for silicon nitride photonic circuits as a basis for developing integrated optics devices. Specifically, by measuring the optical response of SWCNT-covered waveguides, we retrieve the main SWCNT film parameters, such as absorption, nonlinear refractive, and thermo-optic coefficients, and we demonstrate the enhancement of all-optical wavelength conversion and the photoresponse with a 1.2 GHz bandwidth.

8.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241998

RESUMO

We propose a simple dumbbell-shaped scheme of a Holmium-doped fiber laser incorporating a minimum number of optical elements. Mode-locking regimes were realized with the help of polymer-free single-walled carbon nanotubes (SWCNTs) synthesized using an aerosol (floating catalyst) CVD method. We show that such a laser scheme is structurally simple and more efficient than a conventional one using a ring cavity and a similar set of optical elements. In addition, we investigated the effect of SWCNT film transmittance, defined by the number of 40 nm SWCNT layers on the laser's performance: operating regimes, stability, and self-starting. We found that three SWCNT layers with an initial transmittance of about 40% allow stable self-starting soliton mode-locking at a wavelength of 2076 nm with a single pulse energy of 0.6 nJ and a signal-to-noise ratio of more than 60 dB to be achieved.

9.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177050

RESUMO

We examined the effect of hydrogen on the growth of single-walled carbon nanotubes in the aerosol (a specific case of the floating catalyst) chemical vapor deposition process using ethylene as a carbon source and ferrocene as a precursor for a Fe-based catalyst. With a comprehensive set of physical methods (UV-vis-NIR and Raman spectroscopies, transmission electron microscopy, scanning electron microscopy, differential mobility analysis, and four-probe sheet resistance measurements), we showed hydrogen to inhibit ethylene pyrolysis extending the window of synthesis parameters. Moreover, the detailed study at different temperatures allowed us to distinguish three different regimes for the hydrogen effect: pyrolysis suppression at low concentrations (I) followed by surface cleaning/activation promotion (II), and surface blockage/nanotube etching (III) at the highest concentrations. We believe that such a detailed study will help to reveal the complex role of hydrogen and contribute toward the synthesis of single-walled carbon nanotubes with detailed characteristics.

10.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047655

RESUMO

We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis.


Assuntos
Grafite , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafite/química
11.
Phys Rev Lett ; 131(26): 266201, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215361

RESUMO

We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100 nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities. We propose an atomistic mechanism for this phenomenon, associated with synchronic out-of-plane surface fluctuations of thermal origin, and confirm it by numerical experiments. Based on this mechanism, we develop a theory for this type of superlubricity and show that friction force increases linearly with increasing temperature and relative velocity for velocities larger than a threshold velocity. The molecular dynamic results are in a fair agreement with predictions of the theory.

12.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500425

RESUMO

Donor-acceptor conjugated polymers are considered advanced semiconductor materials for the development of thin-film electronics. One of the most attractive families of polymeric semiconductors in terms of photovoltaic applications are benzodithiophene-based polymers owing to their highly tunable electronic and physicochemical properties, and readily scalable production. In this work, we report the synthesis of three novel push-pull benzodithiophene-based polymers with different side chains and their investigation as hole transport materials (HTM) in perovskite solar cells (PSCs). It is shown that polymer P3 that contains triisopropylsilyl side groups exhibits better film-forming ability that, along with high hole mobilities, results in increased characteristics of PSCs. Encouraging a power conversion efficiency (PCE) of 17.4% was achieved for P3-based PSCs that outperformed the efficiency of devices based on P1, P2, and benchmark PTAA polymer. These findings feature the great potential of benzodithiophene-based conjugated polymers as dopant-free HTMs for the fabrication of efficient perovskite solar cells.


Assuntos
Compostos de Cálcio , Polímeros , Óxidos , Semicondutores
13.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234671

RESUMO

Controlling the permittivity of dielectric composites is critical for numerous applications dealing with matter/electromagnetic radiation interaction. In this study, we have prepared polymer composites, based on a silicone elastomer matrix and Tuball carbon nanotubes (CNT) via a simple preparation procedure. The as-prepared composites demonstrated record-high dielectric permittivity both in the low-frequency range (102−107 Hz) and in the X-band (8.2−12.4 GHz), significantly exceeding the literature data for such types of composite materials at similar CNT content. Thus, with the 2 wt% filler loading, the permittivity values reach 360 at 106 Hz and >26 in the entire X-band. In similar literature, even the use of conductive polymer hosts and various highly conductive additives had not resulted in such high permittivity values. We attribute this phenomenon to specific structural features of the used Tuball nanotubes, namely their length and ability to form in the polymer matrix percolating network in the form of neuron-shaped clusters. The low cost and large production volumes of Tuball nanotubes, as well as the ease of the composite preparation procedure open the doors for production of cost-efficient, low weight and flexible composites with superior high permittivity.

14.
J Phys Chem Lett ; 13(37): 8775-8782, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36103372

RESUMO

The films of single-walled carbon nanotubes (SWCNTs) are a promising material for flexible transparent electrodes, which performance depends not only on the properties of individual nanotubes but also, foremost, on bundling of individual nanotubes. This work investigates the impact of densification on optical and electronic properties of SWCNT bundles and fabricated films. Our ab initio analysis shows that the optimally densified bundles, consisting of a mixture of quasi-metallic and semiconducting SWCNTs, demonstrate quasi-metallic behavior and can be considered as an effective conducting medium. Our density functional theory calculations indicate the band curving and bandgap narrowing with the reduction of the distance between nanotubes inside bundles. Simulation results are consistent with the observed conductivity improvement and shift of the absorption peaks in SWCNT films densified in isopropyl alcohol. Therefore, not only individual nanotubes but also the bundles should be considered as building blocks for high-performance transparent conductive SWCNT-based films.

15.
Nanotechnology ; 33(48)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35985239

RESUMO

Design of new smart prosthetics or robotic grippers gives a major impetus to low-cost manufacturing and rapid prototyping of force sensing devices. In this paper, we examine piezoresistive force sensors based on carbon nanotube fibers fabricated by a novel wet pulling technique. The developed sensor is characterized by an adjustable force range coupled with high sensitivity to enable the detection of a wide range of forces and displacements limited by the experimental setup only. We have demonstrated the applicability of the developed unit in tactile sensing, displacement sensing, and nanophone vibration monitoring system and evaluated its force sensing characteristics, i.e. displacement/force input and resistance/mechanical response. In the experiments it measures 0-115 N force range within 2.5 mm displacement. Moreover, the sensor demonstrates good linearity, low hysteresis, and stability when tested over 10 000 cycles. The developed sensor suits multiple applications in the field of soft and transparent sensors, nanophones, actuators, and other robotics devices for both regular and extreme environments, e.g. deep underwater and radioactive environment.

16.
Anal Chem ; 94(36): 12305-12313, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36027051

RESUMO

Alcohol intoxication has a dangerous effect on human health and is often associated with a risk of catastrophic injuries and alcohol-related crimes. A demand to address this problem adheres to the design of new sensor systems for the real-time monitoring of exhaled breath. We introduce a new sensor system based on a porous hydrophilic layer of submicron silica particles (SiO2 SMPs) placed on a one-dimensional photonic crystal made of Ta2O5/SiO2 dielectric layers whose operation relies on detecting changes in the position of surface wave resonance during capillary condensation in pores. To make the active layer of SiO2 SMPs, we examine the influence of electrostatic interactions of media, particles, and the surface of the crystal influenced by buoyancy, gravity force, and Stokes drag force in the frame of the dip-coating preparation method. We evaluate the sensing performance toward biomarkers such as acetone, ammonia, ethanol, and isopropanol and test sensor system capabilities for alcohol intoxication assessment. We have found this sensor to respond to all tested analytes in a broad range of concentrations. By processing the sensor signals by principal component analysis, we selectively determined the analytes. We demonstrated the excellent performance of our device for alcohol intoxication assessment in real-time.


Assuntos
Intoxicação Alcoólica , Acetona/análise , Intoxicação Alcoólica/diagnóstico , Etanol/análise , Humanos , Óptica e Fotônica , Fótons , Dióxido de Silício/química
17.
Nanomaterials (Basel) ; 12(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014734

RESUMO

Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.

18.
Adv Sci (Weinh) ; 9(24): e2201673, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712777

RESUMO

Electrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply. Single-walled carbon nanotubes (SWCNTs) are a promising alternative for transparent conducting films (TCFs) because of their unique and excellent chemical and physical properties. Here, the latest achievements in the optoelectronic performance of TCFs based on SWCNTs are analyzed. Various approaches to evaluate the performance of transparent electrodes are briefly reviewed. A roadmap for further research and development of the transparent conductors using "rational design," which breaks the deadlock for obtaining the TCFs with a performance close to the theoretical limit, is also described.

19.
RSC Adv ; 12(25): 16235-16256, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733671

RESUMO

Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 µg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.

20.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35564170

RESUMO

Mesoscopic superconductivity deals with various quasiparticle excitation modes, only one of them-the charge-mode-being directly accessible for conductance measurements due to the imbalance in populations of quasi-electron and quasihole excitation branches. Other modes carrying heat or even spin, valley etc. currents populate the branches equally and are charge-neutral, which makes them much harder to control. This noticeable gap in the experimental studies of mesoscopic non-equilibrium superconductivity can be filled by going beyond the conventional DC transport measurements and exploiting spontaneous current fluctuations. Here, we perform such an experiment and investigate the transport of heat in an open hybrid device based on a superconductor proximitized InAs nanowire. Using shot noise measurements, we investigate sub-gap Andreev heat guiding along the superconducting interface and fully characterize it in terms of the thermal conductance on the order of Gth∼e2/h, tunable by a back gate voltage. Understanding of the heat-mode also uncovers its implicit signatures in the non-local charge transport. Our experiments open a direct pathway to probe generic charge-neutral excitations in superconducting hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA