Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 13(6): 1038-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273919

RESUMO

Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA-encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Metionina/deficiência , Fatores Etários , Animais , Diploide , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Humanos , Metionina/administração & dosagem , Metionina/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia
2.
PLoS Genet ; 10(5): e1004347, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785424

RESUMO

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.


Assuntos
Ácidos/metabolismo , Autofagia , Longevidade , Metionina/administração & dosagem , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Deleção de Genes , Genes Fúngicos , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/metabolismo
3.
Microb Cell ; 1(5): 160-162, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28357240

RESUMO

Methionine restriction (MetR) is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity. In addition, our work identifies vacuolar acidification as a key downstream element of autophagy induction under MetR, and possibly after rapamycin treatment. Unlike other amino acids, methionine plays pleiotropic roles in many metabolism-relevant pathways. For instance, methionine (i) is the N-terminal amino acid of every newly translated protein; (ii) acts as the central donor of methyl groups through S-adenosyl methionine (SAM) during methylation reactions of proteins, DNA or RNA; and (iii) provides the sulfhydryl groups for FeS-cluster formation and redox detoxification via transsulfuration to cysteine. Intriguingly, MetR causes lifespan extension, both in yeast and in rodents. We could show that in Saccharomyces cerevisiae, chronological lifespan (CLS) is increased in two specific methionine-auxotrophic strains (namely Δmet2 and Δmet15).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA