Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 14: 1281733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298607

RESUMO

Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications.

3.
Food Chem ; 390: 133165, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561509

RESUMO

This study investigates the reduction of aflatoxin M1 (AFM1) in skim milk by using ultraviolet light at 254 nm and the effects of influencing factors on the efficacy including treatment time (min), depth of samples (mm), contamination level (µg L-1), stirring, temperature, and fat content in milk. The colour and pH of milk samples were measured to evaluate the influence of the treatment on these values. It was found that short-wave ultraviolet radiation (UVC) reduced up to 50% of AFM1 in milk after 20 min of treatment regardless of the initial AFM1 contamination level. Treatment time, depth of samples, and stirring were all found to significantly (P < 0.05) enhance the reduction of AFM1. The milk colour was affected but there was no influence on the pH of milk samples at any duration of UV exposure. It is concluded that UVC light treatment has the potential to reduce AFM1 in milk.


Assuntos
Aflatoxina M1 , Leite , Aflatoxina M1/análise , Animais , Contaminação de Alimentos/análise , Leite/química , Raios Ultravioleta
4.
Carbohydr Res ; 510: 108445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607125

RESUMO

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Assuntos
Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Hexosaminas/biossíntese , Fosfatos Açúcares/biossíntese , Proteínas de Bactérias/química , Configuração de Carboidratos , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química
5.
J Med Chem ; 59(21): 9686-9720, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548560

RESUMO

The parasitic trypanosomes Trypanosoma brucei and T. cruzi are responsible for significant human suffering in the form of human African trypanosomiasis (HAT) and Chagas disease. Drugs currently available to treat these neglected diseases leave much to be desired. Herein we report optimization of a novel class of N-(2-(2-phenylthiazol-4-yl)ethyl)amides, carbamates, and ureas, which rapidly, selectively, and potently kill both species of trypanosome. The mode of action of these compounds is unknown but does not involve CYP51 inhibition. They do, however, exhibit clear structure-activity relationships, consistent across both trypanosome species. Favorable physicochemical parameters place the best compounds in CNS drug-like chemical space but, as a class, they exhibit poor metabolic stability. One of the best compounds (64a) cleared all signs of T. cruzi infection in mice when CYP metabolism was inhibited, with sterile cure achieved in one mouse. This family of compounds thus shows significant promise for trypanosomiasis drug discovery.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Descoberta de Drogas , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Animais , Humanos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
6.
J Org Chem ; 81(8): 3127-35, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27002792

RESUMO

The first systematic investigation into the Baeyer-Villiger reaction of an anthraquinone is presented. The double Baeyer-Villiger reaction of quinizarin dimethyl ether is viable, directly providing the dibenzo[b,f][1,4]-dioxocin-6,11-dione ring-system, which is otherwise difficult to prepare. This methodology provides rapid access to 1,2,3,4-tetraoxygenated benzenes, and has been exploited by application to the total synthesis of a natural occurring benzodioxole and its biphenyl dimer, which both display noteworthy biological activity. Interestingly, the axially chiral biphenyl was found to be configurationally stable, but the resolved enantiomers exhibit no optical activity at the αD-line.


Assuntos
Antraquinonas/química , Antrodia/química , Derivados de Benzeno/síntese química , Benzodioxóis/química , Produtos Biológicos/síntese química , Dioxinas/química , Éteres/química , Derivados de Benzeno/química , Produtos Biológicos/química , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA