Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(50): 47178-84, 2001 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-11581256

RESUMO

MtaN (Multidrug Transporter Activation, N terminus) is a constitutive, transcriptionally active 109-residue truncation mutant, which contains only the N-terminal DNA-binding and dimerization domains of MerR family member Mta. The 2.75 A resolution crystal structure of apo-MtaN reveals a winged helix-turn-helix protein with a protruding 8-turn helix (alpha5) that is involved in dimerization by the formation of an antiparallel coiled-coil. The hydrophobic core and helices alpha1 through alpha4 are structurally homologous to MerR family member BmrR bound to DNA, whereas one wing (Wing 1) is shifted. Differences between the orientation of alpha5 with respect to the core and the revolution of the antiparallel coiled-coil lead to significantly altered conformations of MtaN and BmrR dimers. These shifts result in a conformation of MtaN that appears to be incompatible with the transcription activation mechanism of BmrR and suggest that additional DNA-induced structural changes are necessary.


Assuntos
Proteínas de Ligação a DNA/química , Transativadores/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Transporte Biológico , Cristalografia por Raios X , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Resistência a Múltiplos Medicamentos , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transativadores/metabolismo , Transcrição Gênica
2.
Curr Opin Microbiol ; 4(5): 509-14, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11587925

RESUMO

Gram-positive bacteria express numerous membrane transporters that promote the efflux of various drugs, including many antibiotics, from the cell to the outer medium. Drug transporters can be specific to a particular drug, or can have broad specificity, as in so-called multidrug transporters. This broad specificity can be a consequence of the hydrophobic nature of transported molecules, as suggested by recent structural studies of soluble multidrug-binding proteins. Although the functions of drug transporters may involve both the protection of bacteria from outside toxins and the transport of natural metabolites, their clinical importance lies largely in providing Gram-positive pathogens with resistance to macrolides, tetracyclines and fluoroquinolones. A number of agents, discovered in recent years, that inhibit drug transporters can potentially be used to overcome efflux-associated antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/metabolismo , Transporte Biológico Ativo , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos
3.
J Mol Microbiol Biotechnol ; 3(2): 151-4, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11321567

RESUMO

The ability of multidrug-efflux transporters to recognize scores of dissimilar organic compounds has always been considered paradoxical because of its apparent contradiction to some of the basic dogmas of biochemistry. In order to understand, at least in principle, how a protein can recognize multiple compounds, we analysed the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. This regulator, BmrR, binds multiple dissimilar hydrophobic cations and, by activating expression of the Bmr transporter, causes their expulsion from the cell. Crystallographic analysis of the complexes of the inducer-binding domain of BmrR with some of its inducers revealed that ligands penetrate the hydrophobic core of the protein, where they form multiple van der Waals and stacking interactions with hydrophobic amino acids and an electrostatic bond with the buried glutamate. Mutational analysis of the binding site suggests that each ligand forms a unique set of atomic contacts with the protein: each tested mutation exerted disparate effects on the binding of different ligands. The example of BmrR demonstrates that a protein can bind multiple hydrophobic compounds with micromolar affinities by using only electrostatic and hydrophobic interactions. Its ligand specificity can be further broadened by the flexibility of the binding site. It appears, therefore, that the commonly expressed fascination with the relaxed substrate specificity of multidrug transporters is misdirected and originates from an almost exclusive familiarity with the more sophisticated processes of specific molecular recognition that predominate among proteins analyzed to date.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Oniocompostos/farmacocinética , Compostos Organofosforados/farmacocinética , Estrutura Secundária de Proteína , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
4.
J Bacteriol ; 183(8): 2399-404, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11274096

RESUMO

Escherichia coli cells, the outer membrane of which is permeabilized with EDTA, release a specific subset of cytoplasmic proteins upon a sudden drop in osmolarity in the surrounding medium. This subset includes EF-Tu, thioredoxin, and DnaK among other proteins, and comprises approximately 10% of the total bacterial protein content. As we demonstrate here, the same proteins are released from electroporated E. coli cells pretreated with EDTA. Although known for several decades, the phenomenon of selective release of proteins has received no satisfactory explanation. Here we show that the subset of released proteins is almost identical to the subset of proteins that are able to pass through a 100-kDa-cutoff cellulose membrane upon molecular filtration of an E. coli homogenate. This finding indicates that in osmotically shocked or electroporated bacteria, proteins are strained through a molecular sieve formed by the transiently damaged bacterial envelope. As a result, proteins of small native sizes are selectively released, whereas large proteins and large protein complexes are retained by bacterial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Escherichia coli/fisiologia , Western Blotting , Permeabilidade da Membrana Celular , Celulose , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Eletroporação , Escherichia coli/efeitos dos fármacos , Pressão Osmótica
5.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 11): 1456-8, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11053850

RESUMO

The N-terminal DNA-binding domain of the multidrug transporter activation protein (MtaN) was crystallized by the hanging-drop vapour-diffusion method using lithium chloride as a precipitant. The crystals are orthorhombic and belong to the space group I2(1)2(1)2(1), with unit-cell parameters a = 49.4, b = 67.8, c = 115. 0 A. Diffraction data have been collected at 100 K to 2.75 A resolution at a synchrotron-radiation source.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , DNA/metabolismo , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Conformação Proteica
6.
Biochem Soc Trans ; 28(4): 517-20, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10961951

RESUMO

Multidrug-efflux transporters recognize scores of structurally dissimilar toxic compounds and expel them from cells. The broad chemical specificity of these transporters challenges some of the basic dogmas of biochemistry and remains unexplained. To understand, at least in principle, how a protein can recognize multiple compounds, we analysed the transcriptional regulator of the Bacillus subtilis multidrug transporter Bmr. This regulator, BmrR, binds multiple dissimilar hydrophobic cations and, by activating the expression of the Bmr transporter, causes their expulsion from the cell. Crystallographic analysis of the complexes of the inducer-binding domain of BmrR with some of its inducers revealed that ligands cause disordering of the surface alpha-helix and penetrate the hydrophobic core of the protein, where they form multiple van der Waals and stacking interactions with hydrophobic amino acids and an electrostatic bond with the buried glutamic residue. Mutational analysis of the binding site suggests that each ligand forms a unique set of atomic contacts with the protein: each tested mutation exerted disparate effects on the binding of different ligands. The example of BmrR demonstrates that a protein can bind multiple compounds with micromolar affinities by using only electrostatic and hydrophobic interactions. Its ligand specificity can be broadened by the flexibility of the binding site. It therefore seems that the commonly expressed fascination with the broad specificity of multidrug transporters is misdirected and originates from an almost exclusive familiarity with the more sophisticated processes of specific molecular recognition that predominate among existing proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Resistência Microbiana a Medicamentos , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Cátions , Análise Mutacional de DNA , Ligantes , Modelos Moleculares , Transcrição Gênica
7.
Trends Biochem Sci ; 25(2): 39-43, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10664577

RESUMO

Multidrug transporters bind chemically dissimilar, potentially cytotoxic compounds and remove them from the cell. How these transporters carry out either of these functions is unknown. On the basis of crystal structures of the multidrug-binding domain of the transcription activator BmrR and mutagenesis studies on the bacterial multidrug transporter MdfA, we propose a possible mechanism for the binding of cationic lipophilic drugs by multidrug transporters. The key element of this mechanism includes a conformational change in the transporter that exposes a buried charged residue in the substrate-binding pocket and allows access to this site by only those drugs that are its steric and electrostatic complements.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Preparações Farmacêuticas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Transativadores/química , Transativadores/metabolismo
8.
Biochemistry ; 38(51): 16925-31, 1999 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-10606527

RESUMO

The Bacillus subtilis transcriptional regulator BmrR recognizes dissimilar hydrophobic cations and, in response, activates the expression of a multidrug transporter which expels them out of the cell. The structure of the inducer-binding domain of BmrR, both free and in complex with one of the inducers, tetraphenylphosphonium (TPP), revealed an unusual internal binding site, covered by an amphipathic alpha-helix. Upon unfolding of this helix, the TPP molecule penetrates into the core of the protein, where it contacts six hydrophobic residues and forms an electrostatic bond with a buried glutamate, E134 [Zheleznova et al. (1999) Cell 96, 353-362]. Here, a structure-based mutational analysis was used to understand how BmrR interacts with a wide variety of ligands. We determined the effects of alanine substitutions of each of the seven residues interacting with TPP, and mutations within the amphipathic alpha-helix, on the binding affinities of six different BmrR inducers. The E134A substitution abolished the binding of all but one inducer. Mutations of the hydrophobic residues contacting the ligand, and of the alpha-helix, had more moderate effects, often with the affinity for some inducers increasing and others decreasing as a result of the same substitution. These results indicate that each inducer forms a unique set of contacts within the binding site. The flexible geometry of this site and the lack of involvement of hydrogen bonds in ligand binding are the likely reasons for the extremely broad inducer specificity of BmrR. The similarly broad substrate specificity of multidrug transporters can be governed by the same structural principles.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Resistência a Múltiplos Medicamentos/genética , Transativadores/química , Transativadores/genética , Substituição de Aminoácidos/genética , Bacillus subtilis , Sítios de Ligação/genética , Análise Mutacional de DNA , Resistência Microbiana a Medicamentos/genética , Ligantes , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína/genética , Espectrometria de Fluorescência , Tirosina/metabolismo
9.
Antimicrob Agents Chemother ; 43(10): 2404-8, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10508015

RESUMO

The multidrug transporter NorA contributes to the resistance of Staphylococcus aureus to fluoroquinolone antibiotics by promoting their active extrusion from the cell. Previous studies with the alkaloid reserpine, the first identified inhibitor of NorA, indicate that the combination of a chemical NorA inhibitor with a fluoroquinolone could improve the efficacy of this class of antibiotics. Since reserpine is toxic to humans at the concentrations required to inhibit NorA, we sought to identify new inhibitors of NorA that may be used in a clinical setting. Screening of a chemical library yielded a number of structurally diverse inhibitors of NorA that were more potent than reserpine. The new inhibitors act in a synergistic manner with the most widely used fluoroquinolone, ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. Furthermore, the inhibitors dramatically suppress the emergence of ciprofloxacin-resistant S. aureus upon in vitro selection with this drug. Some of these new inhibitors, or their derivatives, may prove useful for augmentation of the antibacterial activities of fluoroquinolones in the clinical setting.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Interações Medicamentosas , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Reserpina/farmacologia , Staphylococcus aureus/metabolismo
10.
Mol Microbiol ; 31(5): 1549-59, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10200972

RESUMO

Little is known about the natural functions of multidrug-efflux transporters expressed by bacteria. Although identified as membrane proteins actively extruding exogenous toxins from the cell, they may actually be involved in the transport of as yet unidentified specific natural substrates. The expression of two highly similar multidrug transporters of Bacillus subtilis, Bmr and Blt, is regulated by specific transcriptional activators, BmrR and BltR, respectively, which respond to different inducer molecules, thus suggesting distinct functions for the two transporters. Here, we describe an alternative mechanism of regulation, which involves a global transcriptional activator, Mta, a member of the MerR family of bacterial regulatory proteins. The individually expressed N-terminal DNA-binding domain of Mta interacts directly with the promoters of bmr and blt and induces transcription of these genes. Additionally, this domain stimulates the expression of the mta gene itself and at least one more gene, ydfK, which encodes a hypothetical membrane protein. These results and the similarity of Mta to the thiostrepton-induced protein TipA of Streptomyces lividans strongly suggest that Mta is an autogenously controlled global transcriptional regulator, whose activity is stimulated by an as yet unidentified inducer. This stimulation is mimicked by the removal of the C-terminal inducer-binding domain. The fact that both Bmr and Blt are controlled by this regulator demonstrates that some of their functions are either identical or, at least, related. Further analysis of Mta-mediated regulation may reveal the natural function of the system of multidrug transporters in B. subtilis and serve as a paradigm for similar systems in other bacteria.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acetiltransferases , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Proteínas de Membrana Transportadoras , Transativadores/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Northern Blotting , Proteínas de Transporte/genética , Mapeamento Cromossômico , Pegada de DNA , Análise Mutacional de DNA , Genótipo , Dados de Sequência Molecular , Família Multigênica/genética , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Tioestreptona/farmacologia , Transcrição Gênica , Transdução Genética
11.
Cell ; 96(3): 353-62, 1999 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-10025401

RESUMO

Multidrug-efflux transporters demonstrate an unusual ability to recognize multiple structurally dissimilar toxins. A comparable ability to bind diverse hydrophobic cationic drugs is characteristic of the Bacillus subtilis transcription regulator BmrR, which upon drug binding activates expression of the multidrug transporter Bmr. Crystal structures of the multidrug-binding domain of BmrR (2.7 A resolution) and of its complex with the drug tetraphenylphosphonium (2.8 A resolution) revealed a drug-induced unfolding and relocation of an alpha helix, which exposes an internal drug-binding pocket. Tetraphenylphosphonium binding is mediated by stacking and van der Waals contacts with multiple hydrophobic residues of the pocket and by an electrostatic interaction between the positively charged drug and a buried glutamate residue, which is the key to cation selectivity. Similar binding principles may be used by other multidrug-binding proteins.


Assuntos
Proteínas de Bactérias/química , Transativadores/química , Bacillus subtilis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Resistência Microbiana a Medicamentos , Ligantes , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Rodaminas/química , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
12.
J Bacteriol ; 180(11): 2817-21, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9603866

RESUMO

Substitution of threonine or serine for the evolutionary conserved intramembrane proline P347 of the Bacillus subtilis multidrug transporter Bmr significantly increases the toxin-effluxing activity of Bmr without affecting its abundance in the cell. In cocultivation experiments, we demonstrate that although the mutant T347 Bmr is advantageous to cells growing in the presence of a toxin, the wild-type P347 Bmr is advantageous under the conditions of nutritional limitation. This may explain why Bmr has evolved the way it did, that is, with proline at position 347. These observations provide a basis for speculating that the evolution of Bmr has been determined by its presently unidentified natural function rather than by its ability to expel diverse toxins from the cell.


Assuntos
Substituição de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Resistência a Múltiplos Medicamentos/genética , Proteínas de Membrana Transportadoras , Prolina/fisiologia , Acriflavina/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Resistência Microbiana a Medicamentos/genética , Etídio/metabolismo , Evolução Molecular , Norfloxacino/metabolismo , Proteínas Repressoras/genética , Resistência a Tetraciclina
13.
Biochem Biophys Res Commun ; 239(1): 269-72, 1997 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-9345308

RESUMO

The expression of the Bacillus subtilus multidrug-efflux transporter Bmr can be induced by two of its structurally dissimilar substrates, rhodamine 6G and tetraphenylphosphonium, through their direct interaction with the transcriptional regulator BmrR (Ahmed et al., J. Biol. Chem. 269, 28506). Here, by screening a chemical library, we identified four additional ligands of BmrR inducing Bmr expression at micromolar concentrations. BmrR ligands, although sharing a positive charge and moderate hydrophobicity, are structurally very diverse. At the same time, not all hydrophobic positively charged compounds, including many structural analogs of the inducers, induce Bmr expression, thus suggesting that local chemical interactions and not merely physical properties of the ligands are important for their recognition by BmrR. These results confirm that this soluble protein, like the membrane transporter it regulates, has a uniquely broad substrate specificity.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Resistência Microbiana a Medicamentos , Ligantes , Peso Molecular , Rodaminas/metabolismo
14.
Trends Microbiol ; 5(8): 309-13, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9263408

RESUMO

Bacteria express several multidrug transporters that recognize structurally dissimilar toxic molecules and expel them from cells. These transporters may have evolved to protect bacteria from diverse environmental toxins or to transport specific physiological compounds with the ability to expel drugs being only a fortuitous side effect.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Fenômenos Fisiológicos Bacterianos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Evolução Biológica , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/fisiologia , Modelos Biológicos
15.
Antimicrob Agents Chemother ; 41(6): 1396-8, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9174208

RESUMO

A Streptococcus pneumoniae strain selected for resistance to ethidium bromide demonstrated enhanced energy-dependent efflux of this toxic dye. Both the ethidium resistance and the ethidium efflux could be inhibited by the plant alkaloid reserpine. The ethidium-selected cells demonstrated cross-resistance to the fluoroquinolones norfloxacin and ciprofloxacin; this resistance could also be completely reversed by reserpine. Furthermore, reserpine potentiated the susceptibility of wild-type S. pneumoniae to fluoroquinolones and ethidium. The most plausible explanation for these results is that S. pneumoniae, like some other gram-positive bacteria, expresses a reserpine-sensitive multidrug transporter, which may play an important role in both intrinsic and acquired resistances of this pathogen to fluoroquinolone therapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos/fisiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Anti-Infecciosos/farmacocinética , Resistência Microbiana a Medicamentos , Etídio/farmacocinética , Etídio/farmacologia , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Fluoroquinolonas
16.
J Bacteriol ; 179(7): 2189-93, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9079903

RESUMO

The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cross-resistance profiles of bacteria expressing mutant forms of the transporter differ from each other and from the cross-resistance profile of cells expressing wild-type Bmr. This result strongly suggests that Bmr interacts with its transported drugs directly, with residues Phe143 and Phe306 likely to be involved in substrate recognition.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Transporte/química , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras , Reserpina/farmacologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutagênese Sítio-Dirigida , Reserpina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
17.
J Biol Chem ; 272(14): 8864-6, 1997 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-9083003

RESUMO

Multidrug transporters pump structurally dissimilar toxic molecules out of cells. It is not known, however, if detoxification is the primary physiological function of these transporters. The chromosomal organization of the gene encoding the Bacillus subtilis multidrug transporter Blt suggests a specific function for this protein; it forms a single operon with another gene, bltD, whose protein product is identified here as a spermine/spermidine acetyltransferase, an enzyme catalyzing a key step in spermidine degradation. Overexpression of the Blt transporter in B. subtilis leads not only to the multidrug-resistance phenotype but also to the efflux of large amounts of spermidine into the medium; this efflux is supressed by an inhibitor of Blt, reserpine. Taken together, these results strongly suggest that the natural function of the Blt transporter is the efflux of spermidine, whereas multiple drugs may be recognized by Blt merely opportunistically.


Assuntos
Acetiltransferases , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras , Espermidina/metabolismo , Transativadores , Acetilação , Bacillus subtilis , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Óperon , Reserpina/farmacologia , Simpatolíticos/farmacologia
18.
Protein Sci ; 6(11): 2465-8, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9385651

RESUMO

In the bacterium Bacillus subtilis, the DNA-binding regulatory protein, BmrR, activates transcription from the multidrug transporter gene, bmr, after binding either rhodamine or tetraphenylphosphonium. These two compounds, which have no structural similarity, are also substrates for the bacterial multidrug transporter. BmrR belongs to the MerR family of transcription activators but differs from the other family members in its ability to bind unrelated small molecule activators. As an initial step in the elucidation of the mechanism by which BmrR recognizes rhodamine and tetraphenylphosphonium and activates transcription, we have crystallized the 144-amino acid-residue carboxy terminal dimerization/ligand-binding domain of the BmrR, named the BRC (BmrR C-terminus). Tetragonal crystals of ligand-free BRC take the space group P4(1)2(1)2, or its enantiomorph P4(3)2(1)2, with unit cell dimensions a = b = 76.3 A, c = 96.0 A, alpha = beta = gamma = 90 degrees. Diffraction is observed to at least 2.7 A resolution at room temperature. In addition, we determined the secondary structure content of ligand-free and rhodamine-bound BRC by circular dichroism. In the ligand-free form, BRC has considerable beta-sheet content (41%) and little alpha-helix structure (13%). After BRC binds rhodamine, its beta-sheet content increases to 47% while the alpha-helix structure decreases to 11%. The structure of BRC will provide insight not only into its multidrug recognition mechanism but could as well aid in the elucidation of the recognition and efflux mechanisms of Bmr and other bacterial multidrug transporters.


Assuntos
Bacillus subtilis , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Transativadores/química , Cristalografia por Raios X , Ligantes , Oniocompostos , Compostos Organofosforados , Fragmentos de Peptídeos/química , Rodaminas
20.
J Bacteriol ; 178(5): 1473-5, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8631728

RESUMO

Rhodamine and tetraphenylphosphonium, the substrates of the Bacillus subtilis multidrug efflux transporter Bmr, induce the expression of Bmr through direct interaction with its transcriptional activator BmrR. Here we show that the C-terminal domain of BmrR, expressed individually, binds both these compounds and therefore can be used as a model for molecular analysis of the phenomenon of multidrug recognition.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Fragmentos de Peptídeos/metabolismo , Transativadores/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ligação Competitiva , Proteínas de Transporte/biossíntese , Fragmentos de Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/metabolismo , Rodaminas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA