Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140047

RESUMO

Respirable particles are integral to effective inhalable therapeutic ingredient delivery, demanding precise engineering for optimal lung deposition and therapeutic efficacy. This review describes different physicochemical properties and their role in determining the aerodynamic performance and therapeutic efficacy of dry powder formulations. Furthermore, advances in top-down and bottom-up techniques in particle preparation, highlighting their roles in tailoring particle properties and optimizing therapeutic outcomes, are also presented. Practices adopted for particle engineering during the past 100 years indicate a significant transition in research and commercial interest in the strategies used, with several innovative concepts coming into play in the past decade. Accordingly, this article highlights futuristic particle engineering approaches such as electrospraying, inkjet printing, thin film freeze drying, and supercritical processes, including their prospects and associated challenges. With such technologies, it is possible to reshape inhaled therapeutic ingredient delivery, optimizing therapeutic benefits and improving the quality of life for patients with respiratory diseases and beyond.

2.
Foods ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37761120

RESUMO

Food 3D printing is a computer-aided additive manufacturing technology that can transform foods into intricate customized forms. In the past decade, this field has phenomenally advanced and one pressing need is the development of strategies to support process optimization. Among different approaches, a range of modeling methods have been explored to simulate 3D printing processes. This review details the concepts of various modeling techniques considered for simulating 3D printing processes and their application range. Most modeling studies majorly focus on predicting the mechanical behavior of the material supply, modifying the internal texture of printed constructs, and assessing the post-printing stability. The approach can also be used to simulate the dynamics of 3D printing processes, in turn, assisting the design of 3D printers based on material composition, properties, and printing conditions. While most existing works are associated with extrusion-based 3D printing, this article presents scope for expanding avenues with prominent research and commercial interest. The article concludes with challenges and research needs, emphasizing opportunities for computational and data-driven dynamic simulation approaches for multi-faceted applications.

3.
Food Chem ; 406: 135035, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36481513

RESUMO

Considering the growing concern of iron and folic acid deficiency, encapsulation of these nutrients and fortification into foods is emerging as an effective counter-strategy. The present work focuses on a scalable approach for the production of iron, ascorbic acid, and folic acid core-shell encapsulates using novel 3-fluid nozzle (3FN) spray drying with whey protein as core and either pectin or hydroxypropyl methylcellulose (HPMC) as shell polymers. The effect of shell formation was observed by comparing core-shell encapsulates with conventional 2-fluid nozzle (2FN) encapsulates. Also, the effect of pH of whey protein on the color of encapsulates is noteworthy; reducing the pH to 4.0 significantly improved the lightness value (52.91 ± 0.13) when compared with the encapsulates with native pH (38.91 ± 0.58). Furthermore, sample with pectin as shell polymer exhibited fair flowability with lowest values of Hausner ratio (1.25 ± 0.04) and Carr's index (20.06 ± 2.71) and highest encapsulation efficiency for folic acid (86.07 ± 5.24%). Whereas, encapsulates having HPMC as shell polymer showed highest lightness value (60.80 ± 0.32) and highest encapsulation efficiency for iron (87.28 ± 4.15%). The formation of core-shell structure was confirmed by evaluation of the surface composition which showed reduced amine bonds and increased aliphatic and carbonyl bonds in the encapsulates prepared by 3FN spray drying. The encapsulates prepared without adjusting whey protein pH showed the least release (∼51 % in 24 h) and bioaccessibility (∼56%) of iron indicating the iron-whey protein complex formation. Based on appearance, smooth surface morphology, flowability, and release behavior, a combination of whey protein and pectin is recommended for co-encapsulation of iron, folic acid and ascorbic acid.


Assuntos
Secagem por Atomização , Vitaminas , Proteínas do Soro do Leite/química , Ácido Fólico/química , Ácido Ascórbico , Polímeros , Pectinas
4.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503314

RESUMO

Among various approaches to understand the health status of an individual, nutritional biomarkers can provide valuable information, particularly in terms of deficiencies, if any, and their severity. Commonly, the approach revolves around molecular sciences, and the information gained can support prognosis, diagnosis, remediation, and impact assessment of therapies. Microfluidic platforms can offer benefits of low sample and reagent requirements, low cost, high precision, and lower detection limits, with simplicity in handling and the provision for complete automation and integration with information and communication technologies (ICTs). While several advances are being made, this work details the underlying concepts, with emphasis on different point-of-care devices for the analysis of macro and micronutrient biomarkers. In addition, the scope of using different wearable microfluidic sensors for real-time and noninvasive determination of biomarkers is detailed. While several challenges remain, a strong focus is given on recent advances, presenting the state-of-the-art of this field. With more such biomarkers being discovered and commercialization-driven research, trends indicate the wide prospects of this advancing field in supporting clinicians, food technologists, nutritionists, and others.

5.
Compr Rev Food Sci Food Saf ; 21(2): 843-867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181994

RESUMO

Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.


Assuntos
Suplementos Nutricionais , Ácidos Graxos , Indústria Alimentícia , Humanos , Triglicerídeos/química
6.
Int J Food Sci ; 2020: 1696201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32455128

RESUMO

The screen-printed electrode biosensor was developed for triglyceride determination in coconut milk. The biosensor was developed by adding lipase, glycerol-3-phosphate (GPO), and glycerol kinase (GK), which is immobilized to a gelatin solution. The concentration of triglyceride is found to be linear to the current produced. The developed screen-printed electrode biosensor showed the optimum response for pH 7.0, 45 mg amount of gelatin, 2.5% glutaraldehyde concentration solution. The developed biosensor was able to find triolein concentrations 0.1 to 1.5 mM. The correlation obtained between these two methods was 93% which was found to be good.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA