Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 66, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085233

RESUMO

The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.


Assuntos
COVID-19 , Citocinas , Disbiose , Microbioma Gastrointestinal , SARS-CoV-2 , Triptofano , Humanos , COVID-19/microbiologia , COVID-19/imunologia , Triptofano/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/metabolismo , Metaboloma , Inflamação , Cinurenina/metabolismo , Cinurenina/sangue , Idoso , Adulto
2.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781213

RESUMO

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Assuntos
Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina 22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animais , Interleucina-33/imunologia , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Interleucinas/genética , Camundongos , Streptococcus pneumoniae/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Humanos , Camundongos Knockout , Microbiota/imunologia , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único
3.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555356

RESUMO

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monócitos , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , Pulmão
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835297

RESUMO

Legionella pneumophila is an intracellular pathogen that can cause severe pneumonia after the inhalation of contaminated aerosols and replication in alveolar macrophages. Several pattern recognition receptors (PRRs) have been identified that contribute to the recognition of L. pneumophila by the innate immune system. However, the function of the C-type lectin receptors (CLRs), which are mainly expressed by macrophages and other myeloid cells, remains largely unexplored. Here, we used a library of CLR-Fc fusion proteins to search for CLRs that can bind the bacterium and identified the specific binding of CLEC12A to L. pneumophila. Subsequent infection experiments in human and murine macrophages, however, did not provide evidence for a substantial role of CLEC12A in controlling innate immune responses to the bacterium. Consistently, antibacterial and inflammatory responses to Legionella lung infection were not significantly influenced by CLEC12A deficiency. Collectively, CLEC12A is able to bind to L. pneumophila-derived ligands but does not appear to play a major role in the innate defense against L. pneumophila.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Lectinas Tipo C , Legionella pneumophila , Doença dos Legionários , Receptores Mitogênicos , Animais , Humanos , Camundongos , Lectinas Tipo C/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Mitogênicos/imunologia
5.
Front Immunol ; 13: 895501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757687

RESUMO

Introduction: Inflammation is a major pathological feature of pulmonary arterial hypertension (PAH), particularly in the context of inflammatory conditions such as systemic sclerosis (SSc). The endothelin system and anti-endothelin A receptor (ETA) autoantibodies have been implicated in the pathogenesis of PAH, and endothelin receptor antagonists are routinely used treatments for PAH. However, immunological functions of the endothelin B receptor (ETB) remain obscure. Methods: Serum levels of anti-ETB receptor autoantibodies were quantified in healthy donors and SSc patients with or without PAH. Age-dependent effects of overexpression of prepro-endothelin-1 or ETB deficiency on pulmonary inflammation and the cardiovascular system were studied in mice. Rescued ETB-deficient mice (ETB-/-) were used to prevent congenital Hirschsprung disease. The effects of pulmonary T-helper type 2 (Th2) inflammation on PAH-associated pathologies were analyzed in ETB-/- mice. Pulmonary vascular hemodynamics were investigated in isolated perfused mouse lungs. Hearts were assessed for right ventricular hypertrophy. Pulmonary inflammation and collagen deposition were assessed via lung microscopy and bronchoalveolar lavage fluid analyses. Results: Anti-ETB autoantibody levels were elevated in patients with PAH secondary to SSc. Both overexpression of prepro-endothelin-1 and rescued ETB deficiency led to pulmonary hypertension, pulmonary vascular hyperresponsiveness, and right ventricular hypertrophy with accompanying lymphocytic alveolitis. Marked perivascular lymphocytic infiltrates were exclusively found in ETB-/- mice. Following induction of pulmonary Th2 inflammation, PAH-associated pathologies and perivascular collagen deposition were aggravated in ETB-/- mice. Conclusion: This study provides evidence for an anti-inflammatory role of ETB. ETB seems to have protective effects on Th2-evoked pathologies of the cardiovascular system. Anti-ETB autoantibodies may modulate ETB-mediated immune homeostasis.


Assuntos
Hipertensão Arterial Pulmonar , Receptor de Endotelina B , Animais , Autoanticorpos/imunologia , Endotelina-1/imunologia , Hipertensão Pulmonar Primária Familiar/imunologia , Humanos , Hipertrofia Ventricular Direita/imunologia , Inflamação/imunologia , Camundongos , Hipertensão Arterial Pulmonar/imunologia , Receptor de Endotelina B/imunologia , Escleroderma Sistêmico/imunologia
7.
Infection ; 50(6): 1441-1452, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35420370

RESUMO

PURPOSE: To investigate antimicrobial use and primary and nosocomial infections in hospitalized COVID-19 patients to provide data for guidance of antimicrobial therapy. METHODS: Prospective observational cohort study conducted at Charité-Universitätsmedizin Berlin, including patients hospitalized with SARS-CoV-2-infection between March and November 2020. RESULTS: 309 patients were included, 231 directly admitted and 78 transferred from other centres. Antimicrobial therapy was initiated in 62/231 (26.8%) of directly admitted and in 44/78 (56.4%) of transferred patients. The rate of microbiologically confirmed primary co-infections was 4.8% (11/231). Although elevated in most COVID-19 patients, C-reactive protein and procalcitonin levels were higher in patients with primary co-infections than in those without (median CRP 110 mg/l, IQR 51-222 vs. 36, IQR 11-101, respectively; p < 0.0001). Nosocomial bloodstream and respiratory infections occurred in 47/309 (15.2%) and 91/309 (29.4%) of patients, respectively, and were associated with need for invasive mechanical ventilation (OR 45.6 95%CI 13.7-151.8 and 104.6 95%CI 41.5-263.5, respectively), extracorporeal membrane oxygenation (OR 14.3 95%CI 6.5-31.5 and 16.5 95%CI 6.5-41.6, respectively), and haemodialysis (OR 31.4 95%CI 13.9-71.2 and OR 22.3 95%CI 11.2-44.2, respectively). The event of any nosocomial infection was significantly associated with in-hospital death (33/99 (33.3%) with nosocomial infection vs. 23/210 (10.9%) without, OR 4.1 95%CI 2.2-7.3). CONCLUSIONS: Primary co-infections are rare, yet antimicrobial use was frequent, mostly based on clinical worsening and elevated inflammation markers without clear evidence for co-infection. More reliable diagnostic prospects may help to reduce overtreatment. Rates of nosocomial infections are substantial in severely ill patients on organ support and associated with worse patient outcome.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , COVID-19 , Coinfecção , Infecção Hospitalar , Humanos , COVID-19/epidemiologia , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , SARS-CoV-2 , Mortalidade Hospitalar , Estudos Prospectivos , Anti-Infecciosos/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia
8.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163191

RESUMO

Pneumonia is a life-threatening disease often caused by infection with Streptococcus pneumoniae and Pseudomonas aeruginosa. Many of the mediators (e.g., TNF, IL-6R) and junction molecules (e.g., E-cadherin) orchestrating inflammatory cell recruitment and loss of barrier integrity are proteolytically cleaved through a disintegrin and metalloproteinases (ADAMs). We could show by Western blot, surface expression analysis and measurement of proteolytic activity in cell-based assays, that ADAM10 in epithelial cells is upregulated and activated upon infection with Pseudomonas aeruginosa and Exotoxin A (ExoA), but not upon infection with Streptococcus pneumoniae. Targeting ADAM10 by pharmacological inhibition or gene silencing, we demonstrated that this activation was critical for cleavage of E-cadherin and modulated permeability and epithelial integrity. Stimulation with heat-inactivated bacteria revealed that the activation was based on the toxin repertoire rather than the interaction with the bacterial particle itself. Furthermore, calcium imaging experiments showed that the ExoA action was based on the induction of calcium influx. Investigating the extracellular vesicles and their proteolytic activity, we could show that Pseudomonas aeruginosa triggered exosomal release of ADAM10 and proteolytic cleavage in trans. This newly described mechanism could constitute an essential mechanism causing systemic inflammation in patients suffering from Pseudomonas aeruginosa-induced pneumonia stimulating future translational studies.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Células A549 , Epitélio/metabolismo , Exossomos/metabolismo , Exossomos/fisiologia , Humanos , Inflamação/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Células THP-1
9.
Nat Commun ; 12(1): 7165, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887398

RESUMO

Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.


Assuntos
Proteínas do Sistema Complemento/imunologia , Legionella pneumophila/genética , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Acetiltransferases/genética , Acetiltransferases/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Genoma Bacteriano , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/imunologia , Legionella pneumophila/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Filogenia
10.
Sci Transl Med ; 13(576)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441423

RESUMO

Mucosal surfaces of the upper respiratory tract and gut are physiologically colonized with their own collection of microbes, the microbiota. The normal upper respiratory tract and gut microbiota protects against pneumonia by impeding colonization by potentially pathogenic bacteria and by regulating immune responses. However, antimicrobial therapy and critical care procedures perturb the microbiota, thus compromising its function and predisposing to lung infections (pneumonia). Interindividual variations and age-related alterations in the microbiota also affect vulnerability to pneumonia. We discuss how the healthy microbiota protects against pneumonia and how host factors and medical interventions alter the microbiota, thus influencing susceptibility to pneumonia.


Assuntos
Microbioma Gastrointestinal , Microbiota , Pneumonia , Suscetibilidade a Doenças , Humanos
11.
Infection ; 48(4): 619-626, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535877

RESUMO

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide causing a global health emergency. Pa-COVID-19 aims to provide comprehensive data on clinical course, pathophysiology, immunology and outcome of COVID-19, to identify prognostic biomarkers, clinical scores, and therapeutic targets for improved clinical management and preventive interventions. METHODS: Pa-COVID-19 is a prospective observational cohort study of patients with confirmed SARS-CoV-2 infection treated at Charité - Universitätsmedizin Berlin. We collect data on epidemiology, demography, medical history, symptoms, clinical course, and pathogen testing and treatment. Systematic, serial blood sampling will allow deep molecular and immunological phenotyping, transcriptomic profiling, and comprehensive biobanking. Longitudinal data and sample collection during hospitalization will be supplemented by long-term follow-up. RESULTS: Outcome measures include the WHO clinical ordinal scale on day 15 and clinical, functional, and health-related quality-of-life assessments at discharge and during follow-up. We developed a scalable dataset to (i) suit national standards of care, (ii) facilitate comprehensive data collection in medical care facilities with varying resources, and (iii) allow for rapid implementation of interventional trials based on the standardized study design and data collection. We propose this scalable protocol as blueprint for harmonized data collection and deep phenotyping in COVID-19 in Germany. CONCLUSION: We established a basic platform for harmonized, scalable data collection, pathophysiological analysis, and deep phenotyping of COVID-19, which enables rapid generation of evidence for improved medical care and identification of candidate therapeutic and preventive strategies. The electronic database accredited for interventional trials allows fast trial implementation for candidate therapeutic agents. TRIAL REGISTRATION: Registered at the German registry for clinical studies (DRKS00021688).


Assuntos
Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Sistema de Registros , Berlim/epidemiologia , Betacoronavirus , Bancos de Espécimes Biológicos , COVID-19 , Infecções por Coronavirus/epidemiologia , Gerenciamento Clínico , Humanos , Estudos Observacionais como Assunto , Pandemias , Fenótipo , Pneumonia Viral/epidemiologia , Estudos Prospectivos , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Fatores de Tempo , Resultado do Tratamento , Organização Mundial da Saúde
12.
Am J Respir Crit Care Med ; 202(5): 730-744, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421376

RESUMO

Rationale: Platelets are generated in the capillaries of the lung, control hemostasis, and display immunological functions. Tuberculosis primarily affects the lung, and patients show platelet changes and hemoptysis. A role of platelets in immunopathology of pulmonary tuberculosis requires careful assessment.Objectives: To identify the dynamics and interaction partners of platelets in the respiratory tissue and establish their impact on the outcome of pulmonary tuberculosis.Methods: Investigations were primarily performed in murine models of primary progressive pulmonary tuberculosis, by analysis of mouse strains with variable susceptibility to Mycobacterium tuberculosis infection using platelet depletion and delivery of antiplatelet drugs.Measurements and Main Results: Platelets were present at the site of infection and formed aggregates with different myeloid subsets during experimental tuberculosis. Such aggregates were also detected in patients with tuberculosis. Platelets were detrimental during the early phase of infection, and this effect was uncoupled from their canonical activation. Platelets left lung cell dynamics and patterns of antimycobacterial T-cell responses unchanged but hampered antimicrobial defense by restricting production of reactive oxygen species in lung-residing myeloid cells.Conclusions: Platelets are detrimental in primary progressive pulmonary tuberculosis, orchestrate lung immunity by modulating innate immune responsiveness, and may be amenable to new interventions for this deadly disease.


Assuntos
Plaquetas/metabolismo , Mycobacterium tuberculosis/imunologia , Fagócitos/patologia , Explosão Respiratória/fisiologia , Linfócitos T/imunologia , Tuberculose Pulmonar/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
13.
Am J Respir Cell Mol Biol ; 61(3): 284-289, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31059654

RESUMO

Several body sites, including the intestinal and respiratory tracts, are colonized with a myriad of bacteria, archaea, fungi, and viruses, which are collectively referred to as the "microbiota." The bacterial component of the microbiota in particular has been recognized to influence a multitude of physiological functions, including innate and adaptive immune responses. Germ-free and microbiota-depleted animals display an impaired antimicrobial defense and are therefore highly susceptible to various infections, including those affecting the lung. In this review, we summarize current understanding of how the microbiota affects antimicrobial immunity and disease tolerance during viral and bacterial pulmonary infections. A better understanding of these mechanisms could help to refine clinical approaches to preserve or rescue the microbiota-immune system interplay and protect patients against lung infections.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata/imunologia , Pulmão/imunologia
14.
Gerontology ; 65(2): 145-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30368497

RESUMO

BACKGROUND: Aging is a multifactorial process driven by several conditions. Among them, inflamm-aging is characterized by chronic low-grade inflammation driving aging-related diseases. The aged immune system is characterized by the senescence-associated secretory phenotype, resulting in the release of proinflammatory cytokines contributing to inflamm-aging. Another possible mechanism resulting in inflamm-aging could be the increased release of danger- associated molecular patterns (DAMPs) by increased cell death in the elderly, leading to a chronic low-grade inflammatory response. Several pattern recognition receptors of the innate immune system are involved in recognition of DAMPs. The DNA-sensing cGAS-STING pathway plays a pivotal role in combating viral and bacterial infections and recognizes DNA released by cell death during the process of aging, which in turn may result in increased inflamm-aging. OBJECTIVE: The aim of this study was to investigate whether a variation within the STING gene with known impaired function may be associated with protection from aging-related diseases by decreasing the process of inflamm-aging. METHODS: STING (Tmem173) R293Q was genotyped in a cohort of 3,397 aged subjects (65-103 years). The distribution of the variant allele in healthy subjects and subjects suffering from aging-associated diseases was compared by logistic regression analysis. RESULTS: We show here that STING 293Q allele carriers were protected from aging-associated diseases (OR = 0.823, p = 0.038). This effect was much stronger in the subgroup of subjects suffering from chronic lung diseases (OR = 0.730, p = 0.009). CONCLUSION: Our results indicate that decreased sensitivity of the innate immune receptors is associated with healthy aging, most likely due to a decreased process of inflamm-aging.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Inflamação/metabolismo , Proteínas de Membrana , Idoso , Idoso de 80 Anos ou mais , Morte Celular/genética , Cognição , Estudos de Coortes , Feminino , Avaliação Geriátrica/métodos , Disparidades nos Níveis de Saúde , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Polônia/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Fatores de Risco , Transdução de Sinais
15.
Crit Care ; 22(1): 282, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373626

RESUMO

BACKGROUND: Antibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI. METHODS: Mice underwent 6-8 weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34 ml/kg; positive end-expiratory pressure = 2 cmH2O) for 4 h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly. RESULTS: Antibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates. CONCLUSIONS: Depletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics.


Assuntos
Antibacterianos/efeitos adversos , Microbiota/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Antibacterianos/uso terapêutico , Gasometria/métodos , Modelos Animais de Doenças , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico
16.
J Clin Invest ; 128(8): 3535-3545, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771684

RESUMO

Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.


Assuntos
Antibacterianos/farmacologia , Deficiência de IgA/tratamento farmacológico , Imunoglobulina A/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/imunologia , Animais , Humanos , Doença Iatrogênica , Deficiência de IgA/genética , Deficiência de IgA/imunologia , Deficiência de IgA/patologia , Camundongos , Camundongos Knockout , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/patologia
17.
Nat Immunol ; 19(4): 386-396, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556002

RESUMO

Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (TFH cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting TFH cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust TFH cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of TFH cell differentiation and a promising target for TFH cell-skewing vaccine adjuvants.


Assuntos
Ativação Linfocitária/imunologia , Viabilidade Microbiana/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 8 Toll-Like/imunologia , Vacinas Atenuadas/imunologia , Adulto , Animais , Formação de Anticorpos/imunologia , Diferenciação Celular/imunologia , Feminino , Humanos , Masculino , Suínos
18.
PLoS Pathog ; 14(1): e1006829, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298342

RESUMO

The cyclic GMP-AMP synthase (cGAS)-STING pathway is central for innate immune sensing of various bacterial, viral and protozoal infections. Recent studies identified the common HAQ and R232H alleles of TMEM173/STING, but the functional consequences of these variants for primary infections are unknown. Here we demonstrate that cGAS- and STING-deficient murine macrophages as well as human cells of individuals carrying HAQ TMEM173/STING were severely impaired in producing type I IFNs and pro-inflammatory cytokines in response to Legionella pneumophila, bacterial DNA or cyclic dinucleotides (CDNs). In contrast, R232H attenuated cytokine production only following stimulation with bacterial CDN, but not in response to L. pneumophila or DNA. In a mouse model of Legionnaires' disease, cGAS- and STING-deficient animals exhibited higher bacterial loads as compared to wild-type mice. Moreover, the haplotype frequency of HAQ TMEM173/STING, but not of R232H TMEM173/STING, was increased in two independent cohorts of human Legionnaires' disease patients as compared to healthy controls. Our study reveals that the cGAS-STING cascade contributes to antibacterial defense against L. pneumophila in mice and men, and provides important insight into how the common HAQ TMEM173/STING variant affects antimicrobial immune responses and susceptibility to infection. TRIAL REGISTRATION: ClinicalTrials.gov DRKS00005274, German Clinical Trials Register.


Assuntos
Antibacterianos/uso terapêutico , Imunidade Inata/genética , Legionella pneumophila/imunologia , Doença dos Legionários/tratamento farmacológico , Doença dos Legionários/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Células Cultivadas , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Polimorfismo Genético , Resultado do Tratamento
19.
Cancer Res ; 78(7): 1685-1699, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363545

RESUMO

Restoring antigen presentation for efficient and durable activation of tumor-specific CD8+ T-cell responses is pivotal to immunotherapy, yet the mechanisms that cause subversion of dendritic cell (DC) functions are not entirely understood, limiting the development of targeted approaches. In this study, we show that bona fide DCs resident in lung tumor tissues or DCs exposed to factors derived from whole lung tumors become refractory to endosomal and cytosolic sensor stimulation and fail to secrete IL12 and IFNI. Tumor-conditioned DC exhibited downregulation of the SNARE VAMP3, a regulator of endosomes trafficking critical for cross-presentation of tumor antigens and DC-mediated tumor rejection. Dissection of cell-extrinsic suppressive pathways identified lactic acid in the tumor microenvironment as sufficient to inhibit type-I IFN downstream of TLR3 and STING. DC conditioning by lactate also impacted adaptive function, accelerating antigen degradation and impairing cross-presentation. Importantly, DCs conditioned by lactate failed to prime antitumor responses in vivo These findings provide a new mechanistic viewpoint to the concept of DC suppression and hold potential for future therapeutic approaches.Significance: These findings provide insight into the cell-intrinsic and cell-extrinsic mechanisms that cause loss of presentation of tumor-specific antigens in lung cancer tissues. Cancer Res; 78(7); 1685-99. ©2018 AACR.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Proteínas de Membrana Transportadoras/biossíntese , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Imunoterapia , Interferon Tipo I/antagonistas & inibidores , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas SNARE/biossíntese , Microambiente Tumoral/imunologia , Proteína 3 Associada à Membrana da Vesícula/biossíntese
20.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29263110

RESUMO

Streptococcus pneumoniae is a frequent colonizer of the upper respiratory tract and a leading cause of bacterial pneumonia. The innate immune system senses pneumococcal cell wall components, toxin, and nucleic acids, which leads to production of inflammatory mediators to initiate and control antibacterial defense. Here, we show that the cGAS (cyclic GMP-AMP [cGAMP] synthase)-STING pathway mediates detection of pneumococcal DNA in mouse macrophages to primarily stimulate type I interferon (IFN) responses. Cells of human individuals carrying HAQ TMEM173, which encodes a common hypomorphic variant of STING, were largely or partly defective in inducing type I IFNs and proinflammatory cytokines upon infection. Subsequent analyses, however, revealed that STING was dispensable for restricting S. pneumoniae during acute pneumonia in mice. Moreover, explorative analyses did not find differences in the allele frequency of HAQ TMEM173 in nonvaccinated pneumococcal pneumonia patients and healthy controls or an association of HAQ TMEM173 carriage with disease severity. Together, our results indicate that the cGAS/STING pathway senses S. pneumoniae but plays no major role in antipneumococcal immunity in mice and humans.


Assuntos
Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nucleotidiltransferases/genética , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA