Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(50): 15570-15578, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480432

RESUMO

Biomimetic riblet surfaces, such as blade, wavy, sinusoidal, and herringbone riblet surfaces, have widespread applications for drag reduction in the energy, transportation, and biomedicine industries. The drag reduction ability of a blade riblet surface is sensitive to the yaw angle, which is the angle between the design direction of the riblet surface and the average flow direction. In practical applications, the average flow direction is often misaligned with the design direction of riblet surfaces with different morphologies and arrangements. However, previous studies have not reported on the drag reduction characteristics and regularities related to the yaw angle for surfaces with complex riblet microstructures. For the first time, we systematically investigated the aerodynamic drag reduction characteristics of blade, wavy, sinusoidal, and herringbone riblet surfaces affected by different yaw angles. A precisely adjustable yaw angle measurement method was proposed based on a closed air channel. Our results revealed the aerodynamic behavior regularities of various riblet surfaces as affected by yaw angles and Reynolds numbers. Riblet surfaces with optimal air drag reduction were obtained in yaw angles ranging from 0 to 60° and Reynolds numbers ranging from 4000 to 7000. To evaluate the effects of the yaw angle, we proposed a criterion based on the actual spanwise spacing (d+) of microstructure surfaces with the same phase in a near-wall airflow field. Finally, we established conceptual models of aerodynamic behaviors for different riblet surfaces in response to changes in the airflow direction. Our research lays a foundation for practical various riblet surface applications influenced by yaw angles to reduce air drag.


Assuntos
Hidrodinâmica , Modelos Teóricos
2.
Chemosphere ; 76(8): 1056-61, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19446861

RESUMO

Sorption of copper (Cu(2+)) by untreated and treated (bleaching and hydrolysis) aspen wood fibers, cellulose and lignin was examined to understand the Cu(2+) sorption behavior by these natural sorbents. All sorbents were characterized by solid-state (13)C NMR and FTIR. Bleaching broke up aromatic structures and increased hydrophilicity of the fibers, whereas hydrolysis decreased carbohydrate content, producing a more hydrophobic structure. Copper sorption was a function of pH; the percentage of Cu(2+) sorption steadily increased from pH 1.5 to 4.5 with a maximum sorption amount at around pH 5.5 for all the materials. All isotherms fitted well to the Langmuir equation. Bleached sample (BL) had a highest sorption capacity, followed by untreated (UTR), cellulose (CEL), and hydrolyzed (HHY), while lignin (LIG) had little Cu(2+) sorption under the studied conditions. The results suggested that carboxyl (-COOH) and hydroxyl (-CHOH) in carbohydrates are mainly responsible for Cu(2+) sorption, and that ion exchange may be a main sorption mechanism for the studied sorbents. Additionally, the sorption capacity for Cu(2+) on all sorbents decreased with the increase of the initial concentrations of Ca(2+), Na(+) or Al(3+). Copper sorption decreased rapidly at low initial concentrations of Ca(2+), Na(+) or Al(3+). However, the decline of Cu(2+) sorption slowed down when initial Na(+) and Ca(2+) concentration was higher than 0.05M or initial Al(3+) concentration was greater than 0.005M, indicating that specific adsorption may be taking place. Therefore, the majority of sorbed Cu(2+) to aspen wood fibers could be through ion exchange (especially, for UTR, BL and CEL), while a faction of sorbed Cu(2+) via inner-sphere complex (or specific adsorption).


Assuntos
Celulose/química , Cobre/química , Lignina/química , Madeira , Adsorção , Concentração de Íons de Hidrogênio , Troca Iônica , Espectroscopia de Ressonância Magnética , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água
3.
J Chem Phys ; 124(15): 154902, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16674260

RESUMO

We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.


Assuntos
Simulação por Computador , Eletrólitos/química , Entropia , Modelos Teóricos , Sais/química , Eletricidade Estática
4.
J Chem Phys ; 123(7): 074905, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229618

RESUMO

We have investigated the nature of counterion condensation on uniformly charged semiflexible polyelectrolyte chains and the concomitant configurations by monitoring the role of chain stiffness, chain length, counterion valency, and the strength of electrostatic interaction. The counterion condensation is seen to follow the adsorption process and the effective polymer charge increases with chain stiffness. Size and shape, as calculated through the radius of gyration, effective persistence length, and hydrodynamic radius, are studied. Stable coil-like, globular, folded-chain, toroidal, and rodlike configurations are possible at suitable combinations of values of chain stiffness, chain length, electrostatic interaction strength, and the valency of counterion. For high strengths of electrostatic interactions, sufficiently stiff polyelectrolytes form toroids in the presence of multivalent counterions, whereas flexible polyelectrolytes form disordered globules. The kinetic features of the nucleation and growth of toroids are monitored. Several metastable structures are found to frustrate the formation of toroids. The generic pathway involves the nucleation of one primary loop somewhere along the chain contour, followed by a growth process where the rest of the chain is folded continuously on top of the primary loop. The dependence of the average radii of toroids on the chain length is found to be roughly linear, in disagreement with existing scaling arguments.


Assuntos
Físico-Química/métodos , Adsorção , Simulação por Computador , Eletrólitos , Íons , Cinética , Modelos Estatísticos , Conformação Molecular , Estrutura Molecular , Polímeros/química , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA