Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 4(3): 191-211, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275653

RESUMO

OBJECTIVE: Expression of Spam1/PH20 and its modulation of high/low molecular weight hyaluronan substrate have been proposed to play an important role in murine oligodendrocyte precursor cell (OPC) maturation in vitro and in normal and demyelinated central nervous system (CNS). We reexamined this using highly purified PH20. METHODS: Steady-state expression of mRNA in OPCs was evaluated by quantitative polymerase chain reaction; the role of PH20 in bovine testicular hyaluronidase (BTH) inhibition of OPC differentiation was explored by comparing BTH to a purified recombinant human PH20 (rHuPH20). Contaminants in commercial BTH were identified and their impact on OPC differentiation characterized. Spam1/PH20 expression in normal and demyelinated mouse CNS tissue was investigated using deep RNA sequencing and immunohistological methods with two antibodies directed against recombinant murine PH20. RESULTS: BTH, but not rHuPH20, inhibited OPC differentiation in vitro. Basic fibroblast growth factor (bFGF) was identified as a significant contaminant in BTH, and bFGF immunodepletion reversed the inhibitory effects of BTH on OPC differentiation. Spam1 mRNA was undetected in OPCs in vitro and in vivo; PH20 immunolabeling was undetected in normal and demyelinated CNS. INTERPRETATION: We were unable to detect Spam1/PH20 expression in OPCs or in normal or demyelinated CNS using the most sensitive methods currently available. Further, "BTH" effects on OPC differentiation are not due to PH20, but may be attributable to contaminating bFGF. Our data suggest that caution be exercised when using some commercially available hyaluronidases, and reports of Spam1/PH20 morphogenic activity in the CNS may be due to contaminants in reagents.

2.
JAMA Neurol ; 71(12): 1481-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25285942

RESUMO

IMPORTANCE: Although considerable effort has been expended developing drug candidates for Alzheimer disease, none have yet succeeded owing to the lack of efficacy or to safety concerns. One potential shortcoming of current approaches to Alzheimer disease drug discovery and development is that they rely primarily on transformed cell lines and animal models that substantially overexpress wild-type or mutant proteins. It is possible that drug development failures thus far are caused in part by the limits of these approaches, which do not accurately reveal how drug candidates will behave in naive human neuronal cells. OBJECTIVE: To analyze purified neurons derived from human induced pluripotent stem cells from patients carrying 3 different presenilin 1 (PS1) mutations and nondemented control individuals in the absence of any overexpression. We tested the efficacy of γ-secretase inhibitor and γ-secretase modulator (GSM) in neurons derived from both normal control and 3 PS1 mutations (A246E, H163R, and M146L). DESIGN, SETTING, AND PARTICIPANTS: Adult human skin biopsies were obtained from volunteers at the Alzheimer Disease Research Center, University of California, San Diego. Cell cultures were treated with γ-secretase inhibitor or GSM. Comparisons of total ß-amyloid (Aß) and Aß peptides 38, 40, and 42 in the media were made between vehicle- vs drug-treated cultures. MAIN OUTCOMES AND MEASURES: Soluble Aß levels in the media were measured by enzyme-linked immunosorbent assay. RESULTS: As predicted, mutant PS1 neurons exhibited an elevated Aß42:Aß40 ratio (P < .05) at the basal state as compared with the nondemented control neurons. Treatment with a potent non-nonsteroidal anti-inflammatory druglike GSM revealed a new biomarker signature that differs from all previous cell types and animals tested. This new signature was the same in both the mutant and control neurons and consisted of a reduction in Aß42, Aß40, and Aß38 and in the Aß42:Aß40 ratio, with no change in the total Aß levels. CONCLUSIONS AND RELEVANCE: This biomarker discrepancy is likely due to overexpression of amyloid precursor protein in the transformed cellular models. Our results suggest that biomarker signatures obtained with such models are misleading and that human neurons derived from human induced pluripotent stem cells provide a unique signature that will more accurately reflect drug response in human patients and in cerebrospinal fluid biomarker changes observed during GSM treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética , Alanina/análogos & derivados , Alanina/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Azepinas/farmacologia , Biomarcadores/metabolismo , Heterozigoto , Humanos , Mutação/genética , Neurônios/enzimologia , Fragmentos de Peptídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA