Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 191: 114651, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059903

RESUMO

To understand the relationship between changes in aroma and bacteria in pigeon breast meat (PBM) during preservation, bacterial communities and volatile compounds in PBM were analyzed using high-throughput sequencing and gas chromatography-ion mobility spectrometry. Analyses of total viable bacteria counts revealed that modified atmospheric packaging (MAP) and electron beam irradiation (EBI) could be used to extend the shelf-life of PBM to 10 d and 15 d, respectively. Furthermore, Lactococcus spp. and Psychrobacter spp. were the dominant bacterial genera of the MAP and EBI groups, respectively. The results of the study revealed 91 volatile organic compounds, one of which, butanal, was the most intense volatile organic compound while being an important source of aroma differences between the physical preservation techniques. Alpha-terpinolene, acetoin-M, gamma-butyrolactone, 1-hexanol-M, and 2,6-dimethyl-4-heptanone may be markers of PBM spoilage. During preservation, the MA group (treatment with 50 % CO2 + 50 % N2) demonstrated greater stabilization of PBM aroma. A Spearman correlation analysis showed that Lactococcus spp., Psychrobacter spp., and Pseudomonas spp. were the dominant bacterial genera of PBM during preservation and were closely related to an increase in the intensity of anisole, 2-methyl-3-furanthiol, and 5-methyl-2-furanmethanol, respectively. Lactococcus spp. and Psychrobacter spp. play crucial roles in the sensory degradation of PBM. In this study, we analyzed the changes in bacterial genera and volatile organic compounds of PBM under different physical preservation techniques to identify a suitable method for preserving PBM and evaluating its freshness.


Assuntos
Columbidae , Microbiologia de Alimentos , Psychrobacter , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Animais , Columbidae/microbiologia , Psychrobacter/metabolismo , Odorantes/análise , Conservação de Alimentos/métodos , Bactérias/classificação , Carne/microbiologia , Carne/análise , Embalagem de Alimentos/métodos , Lactococcus , Cromatografia Gasosa-Espectrometria de Massas , Aldeídos/análise , Microbiota
2.
Polymers (Basel) ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616574

RESUMO

Arabinoxylan (AX) is a polysaccharide composed of arabinose, xylose, and a small number of other carbohydrates. AX comes from a wide range of sources, and its physicochemical properties and physiological functions are closely related to its molecular characterization, such as branched chains, relative molecular masses, and substituents. In addition, AX also has antioxidant, hypoglycemic, antitumor, and proliferative abilities for intestinal probiotic flora, among other biological activities. AXs of various origins have different molecular characterizations in terms of molecular weight, degree of branching, and structure, with varying structures leading to diverse effects of the biological activity of AX. Therefore, this report describes the physical properties, biological activities, and applications of AX in diverse plants, aiming to provide a theoretical basis for future research on AX as well as provide more options for crop breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA