Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(41): 19399-19408, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307012

RESUMO

In this study, a self-encapsulated Sb-C nanocomposite as an anode material for sodium-ion batteries (SIBs) was successfully synthesised using an SbCl3-citrate complex precursor, followed by a drying and calcination process under an inert N2 atmosphere. When the molar ratio of SbCl3 to citric acid was varied from 1 : 1 to 1 : 4, the Sb-C nanocomposite with a molar ratio of 1 : 3 (Sb-C3) exhibited the highest specific surface area (265.97 m2 g-1) and pore volume (0.158 cm3 g-1). Furthermore, the Sb-C3 electrode showed a high reversible capacity of 559 mA h g-1 at a rate of C/10 and maintained a high reversible capacity of 430 mA h g-1 even after 195 cycles at a rate of 1C. The Sb-C3 electrode exhibited an excellent rate capability of 603, 445, and 357 mA h g-1 at the rates of C/20, 5C, and 10C, respectively. Furthermore, a full cell composed of an Sb-C3 anode and a Na3V2(PO4)3 cathode exhibited good specific capacity and cyclability, making the Sb-C composite a promising anode material for high-performance SIBs.

2.
ACS Appl Mater Interfaces ; 9(38): 32790-32800, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28875692

RESUMO

Here, we propose a simple method for direct synthesis of a Si@SiC composite derived from a SiO2@C precursor via a Mg thermal reduction method as an anode material for Li-ion batteries. Owing to the extremely high exothermic reaction between SiO2 and Mg, along with the presence of carbon, SiC can be spontaneously produced with the formation of Si. The synthesized Si@SiC was composed of well-mixed SiC and Si nanocrystallites. The SiC content of the Si@SiC was adjusted by tuning the carbon content of the precursor. Among the resultant Si@SiC materials, the Si@SiC-0.5 sample, which was produced from a precursor containing 4.37 wt % of carbon, exhibits excellent electrochemical characteristics, such as a high first discharge capacity of 1642 mAh g-1 and 53.9% capacity retention following 200 cycles at a rate of 0.1C. Even at a high rate of 10C, a high reversible capacity of 454 mAh g-1 was obtained. Surprisingly, at a fixed discharge rate of C/20, the Si@SiC-0.5 electrode delivered a high capacity of 989 mAh g-1 at a charge rate of 20C. In addition, a full cell fabricated by coupling a lithiated Si@SiC-0.5 anode and a LiCoO2 cathode exhibits excellent cyclability over 50 cycles. This outstanding electrochemical performance of Si@SiC-0.5 is attributed to the SiC phase, which acts as a buffer layer that stabilizes the nanostructure of the Si active phase and enhances the electrical conductivity of the electrode.

3.
ACS Appl Mater Interfaces ; 8(32): 20710-9, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27463563

RESUMO

A composite gel polymer electrolyte (CGPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer that includes Al-doped Li0.33La0.56TiO3 (A-LLTO) particles covered with a modified SiO2 (m-SiO2) layer was fabricated through a simple solution-casting method followed by activation in a liquid electrolyte. The obtained CGPE possessed high ionic conductivity, a large electrochemical stability window, and interfacial stability-all superior to that of the pure gel polymer electrolyte (GPE). In addition, under a highly polarized condition, the CGPE effectively suppressed the growth of Li dendrites due to the improved hardness of the GPE by the addition of inorganic A-LLTO/m-SiO2 particles. Accordingly, the Li-ion polymer and Li-O2 cells employing the CGPE exhibited remarkably improved cyclability compared to cells without CGPE. In particular, the CGPE as a protection layer for the Li metal electrode in a Li-O2 cell was effective in blocking the contamination of the Li electrode by oxygen gas or impurities diffused from the cathode side while suppressing the Li dendrites.

4.
Nanoscale ; 7(6): 2552-60, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25579776

RESUMO

In this study, a novel method has been proposed for synthesizing amorphous GeO2/C composites. The amorphous GeO2/C composite without carbon black as an electrode for Li-ion batteries exhibited a high specific capacity of 914 mA h g(-1) at the rate of C/2 and enhanced rate capability. The amorphous GeO2/C electrode exhibited excellent electrochemical stability with a 95.3% charge capacity retention after 400 charge-discharge cycles, even at a high current charge-discharge of C/2. Furthermore, a full cell employing the GeO2/C anode and the LiCoO2 cathode displayed outstanding cycling performance. The superior performance of the GeO2/C electrode enables the amorphous GeO2/C to be a potential anode material for secondary Li-ion batteries.

5.
Nanoscale ; 6(17): 10071-6, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25033093

RESUMO

To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g(-1) and maintained a reversible capacity of 1000 mA h g(-1) for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g(-1), even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA