Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 7: 350-365, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624211

RESUMO

Changes in lifestyle and environmental conditions give rise to an increasing prevalence of liver and lung fibrosis, and both have a poor prognosis. Promising results have been reported for recombinant angiotensin-converting enzyme 2 (ACE2) protein administration in experimental liver and lung fibrosis. However, the full potential of ACE2 may be achieved by localized translation of a membrane-anchored form. For this purpose, we advanced the latest RNA technology for liver- and lung-targeted ACE2 translation. We demonstrated in vitro that transfection with ACE2 chemically modified messenger RNA (cmRNA) leads to robust translation of fully matured, membrane-anchored ACE2 protein. In a second step, we designed eight modified ACE2 cmRNA sequences and identified a lead sequence for in vivo application. Finally, formulation of this ACE2 cmRNA in tailor-made lipidoid nanoparticles and in lipid nanoparticles led to liver- and lung-targeted translation of significant amounts of ACE2 protein, respectively. In summary, we provide evidence that RNA transcript therapy (RTT) is a promising approach for ACE2-based treatment of liver and lung fibrosis to be tested in fibrotic disease models.

2.
Biochem Biophys Res Commun ; 482(4): 796-801, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27888105

RESUMO

Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery.


Assuntos
Lipídeos/química , Magnetismo/métodos , Nanopartículas de Magnetita/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Transfecção/métodos , Tecido Adiposo/metabolismo , Animais , Células Endoteliais/metabolismo , Lipossomos/química , Camundongos , Músculos/metabolismo , Células NIH 3T3 , RNA Mensageiro/genética , Ovinos , Suínos
3.
Angew Chem Int Ed Engl ; 55(33): 9591-5, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376704

RESUMO

The development of chemically modified mRNA holds great promise as a new class of biologic therapeutics. However, the intracellular delivery and endosomal escape of mRNA encapsulated in nanoparticles has not been systematically investigated. Here, we synthesized a diverse set of cationic polymers and lipids from a series of oligoalkylamines and subsequently characterized their mRNA delivery capability. Notably, a structure with an alternating alkyl chain length between amines showed the highest transfection efficiency, which was linked to a high buffering capacity in a narrow range of pH 6.2 to 6.5. Variation in only one methylene group resulted in enhanced mRNA delivery to both the murine liver as well as porcine lungs after systemic or aerosol administration, respectively. These findings reveal a novel fundamental structure-activity relationship for the delivery of mRNA that is independent of the class of mRNA carrier and define a promising new path of exploration in the field of mRNA therapeutics.


Assuntos
Aminas/química , Lipídeos/química , Polímeros/química , RNA Mensageiro/genética , Animais , Cátions/química , Camundongos , Células NIH 3T3 , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA