Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 32(2): 117-130, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32689116

RESUMO

Functional and morphological (structural) characteristics of Quercus ilex L. leaves under drought stress were studied in the forest and in a nursery. We compared undisturbed individuals (controls) with resprouts emerging after clear-cut or excision. When soil water availability was high, gas-exchange was similar in resprouts and controls, despite higher midday leaf water potential, midday leaf hydration and relative water content (RWC). In moderate drought, stomatal closure was found to limit photosynthesis in controls, and in severe drought non-stomatal limitations of photosynthesis were also greater than in resprouts. Leaf structure and chemical composition changed under drought stress. Leaves tended to be smaller in controls with increasing drought, and resprouts had larger leaves and lower leaf mass area (LMA). The relationship between nitrogen (N) content and LMA implied lower N investment in photosynthetic components in controls, which could be responsible for their increased non-stomatal limitation of photosynthesis. Changes were more apparent in leaf density (D) and thickness (T), components of LMA. Decreases in D were related to reductions in cell wall components: hemicellulose, cellulose and lignin. In resprouts, reduced D and leaf T accounted for the higher mesophyll conductance (gmes) to CO2 measured.

2.
Tree Physiol ; 24(7): 813-22, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15123453

RESUMO

Holm oak (Quercus ilex L.) is native to hot, dry Mediterranean forests where limited water availability often reduces photosynthesis in many species, and forest fires are frequent. Holm oaks resprout after a disturbance, with improved photosynthetic activity and water relations compared with unburned plants. To better understand the role of water availability in this improvement, watering was withheld from container-grown plants, either intact (controls) or resprouts after excision of the shoot, to gradually obtain a wide range of soil water availabilities. At high water availability, gas exchange rates did not differ between controls and resprouts. At moderate soil dryness, net photosynthesis of control plants decreased as a result of increased stomatal limitation, whereas gas exchange rates of resprouts, which had higher midday and predawn leaf water potentials, were unchanged. Under severe drought, resprouts showed a less marked decline in gas exchange than controls and maintained photosystem II integrity, as indicated by chlorophyll fluorescence measurements. Photosynthesis was down-regulated in both plant types in response to reduced CO2 availability caused by high stomatal limitation. Lower non-stomatal limitations in resprouts than in control plants, as evidenced by higher carboxylation velocity and the capacity for ribulose-1,5-bisphosphate regeneration, conferred greater drought resistance under external constraints similar to summer conditions at midday.


Assuntos
Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Quercus/fisiologia , Árvores/fisiologia , Dióxido de Carbono , Clorofila/fisiologia , Desidratação , Regulação para Baixo/fisiologia , Folhas de Planta/fisiologia , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA