Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(15): 3594-603, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25786090

RESUMO

The interaction of PdN clusters (N = 2, 3, 4, 7, and 13) with multiple H2 adsorbate molecules is investigated using density functional theory with the hybrid PBE0 functional. The optimal structure for each PdNH2(L) complex is determined systematically via a sequential addition of H2 units. The adsorption energy for each successive H2 addition is computed to determine the maximum number of molecules that can be stably added to a PdN at T = 0 K. The Gibbs free energy is then used to determine the saturation coverage at finite temperature. For N = 2, 3, and 4, a single H2 is found to dissociate, and up to two additional molecular H2 units per Pd atom can bind stably to the clusters at 0 K. At 300 K, one H2 unit dissociates, and only one additional H2 molecular unit per Pd atom is stably bound. For N = 7 and T = 0 K, two H2 units dissociate, and 11 additional H2 units bind molecularly. At 300 K, two units dissociate, and eight are bound molecularly. For N = 3, 4, and 7, we find that an additional H2 unit may dissociate if the underlying cluster structure rearranges. Eight H2 units dissociate on Pd13 at 0 K. At least one additional H2 binds molecularly at 0 K, but none bind at 300 K. This suggests that only dissociated H2 units will stably bind to larger Pd particles at room temperature. The influence of molecularly adsorbed H2 units on the migration of dissociated H atoms is investigated in a preliminary way. Both barrier heights and the relative stability of local minima of Pd4H2(L) are found to be affected by the degree of molecular H2 coverage.

2.
J Phys Chem A ; 117(40): 10407-15, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980821

RESUMO

Adsorption of an H2 molecule on Pd(N) clusters (N = 2-4, 7, 13, 19, and 55) is investigated using density functional theory with the hybrid PBE0 functional. Low-energy Pd(N) isomers, taken from a large pool of candidate structures for all cluster sizes (except N = 55), are used in systematic searches for the most stable Pd(N)H2 (molecular) and Pd(N)2H (dissociative) adsorption complexes. Molecular adsorption of H2 is found to occur strictly at atop sites, with the strongest binding typically occurring at the site with the smallest coordination. Binding of dissociated H atoms occurs preferentially on 3-fold faces and on certain favorable edge sites, while binding at atop sites is unstable. Dissociative adsorption is energetically preferred to molecular adsorption for all cluster sizes. The dissociative adsorption energy decreases with cluster size, with pronounced variations due to cluster size effects for the smallest clusters. Adsorption reaction pathways are computed for cluster sizes up to N = 13. Molecular adsorption is found to be barrierless in all cases. Dissociative adsorption occurs without a barrier for the pathways studied for N = 7 and 13 and with a small barrier on the smaller clusters. Finally, lowest-energy pathways for the migration of a dissociated hydrogen atom between local minima on a cluster surface are computed for the Pd4, Pd7, and Pd13 clusters. Calculated migration barriers range from 0.05 to 0.25 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA