Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39289182

RESUMO

PURPOSE: The stimulator of interferon genes (STING) is a critical component of the innate immune system and plays a pivotal role in tumor immunotherapy. Developing non-invasive in vivo diagnostic methods for visualizing STING is highly valuable for STING-related immunotherapy. This work aimed to build a noninvasive imaging platform that can dynamically and quantitatively monitor tumor STING expression. METHODS: We investigated the in vivo positron emission tomography (PET) imaging of STING-expressing tumors (B16F10, MC38, and Panc02) with STING-targeted radioprobe ([18F]F-CRI1). The expression of STING in tumors was quantified, and correlation analysis was performed between these results and the outcomes of PET imaging. Furthermore, we optimized the structure of [18F]F-CRIn with polyethylene glycol (PEG) to improve the pharmacokinetic characteristics in vivo. A comprehensive comparison of the imaging and biodistribution results obtained with the optimized probes was conducted in the B16F10 tumors. RESULTS: The PET imaging results showed that the uptake of [18F]F-CRI1 in tumors was positively correlated with the expression of STING in tumors (r = 0.9184, P < 0.001 at 0.5 h). The lipophilicity of the optimized probes was significantly reduced. As a result of employing optimized probes, B16F10 tumor-bearing mice exhibited significantly improved tumor visualization in PET imaging, along with a marked reduction in retention within non-target areas such as the gallbladder and intestines. Biodistribution experiments further validated the efficacy of probe optimization in reducing uptake in non-target areas. CONCLUSION: In summary, this work demonstrated a promising pathway for the development of STING-targeted radioprobes, advancing in vivo PET imaging capabilities.

2.
Redox Biol ; 75: 103294, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096854

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease. However, the definitive diagnosis of IPF is impeded by the limited capabilities of current diagnostic methods, which may fail to capture the optimal timing for treatment. The main goal of this study is to determine the feasibility of a nitroreductase (NTR) responsive probe, 18F-NCRP, for early detection and deterioration monitoring of IPF. 18F-NCRP was obtained with high radiochemical purity (>95 %). BLM-injured mice were established by intratracheal instillation with bleomycin (BLM) and characterized through histological analysis. Longitudinal PET/CT imaging, biodistribution study and in vitro autoradiography were performed. The correlations between the uptake of 18F-NCRP and mean lung density (tested by CT), as well as histopathological characteristics were analyzed. In PET imaging study, 18F-NCRP exhibited promising efficacy in monitoring the progression of IPF, which was earlier than CT. The ratio of uptake in BLM-injured lung to control lung increased from 1.4-fold on D15 to 2.2-fold on D22. Biodistribution data showed a significant lung uptake of 18F-NCRP in BLM-injured mice. There was a strong positive correlation between the 18F-NCRP uptake in the BLM-injured lungs and the histopathological characteristics. Given that, 18F-NCRP PET imaging of NTR, a promising biomarker for investigating the underlying pathogenic mechanism of IPF, is attainable as well as desirable, which might lay the foundation for establishing an NTR-targeted imaging evaluation system of IPF.


Assuntos
Diagnóstico Precoce , Fibrose Pulmonar Idiopática , Nitrorredutases , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Camundongos , Nitrorredutases/metabolismo , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Bleomicina , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/metabolismo , Humanos , Modelos Animais de Doenças , Distribuição Tecidual , Masculino , Radioisótopos de Flúor , Compostos Radiofarmacêuticos
3.
Mol Pharm ; 20(7): 3529-3538, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37243620

RESUMO

The stimulator of interferon genes (STING) is a pivotal protein in the production of STING-dependent type I interferon, which has the potential to enhance tumor rejection. The visualization of STING in the tumor microenvironment is valuable for STING-related treatments, but few STING imaging probes have been reported to date. In this study, we developed a novel 18F-labeled agent ([18F]F-CRI1) with an acridone core structure for the positron emission tomography (PET) imaging of STING in CT26 tumors. The probe was successfully prepared with a nanomolar STING binding affinity of Kd = 40.62 nM. [18F]F-CRI1 accumulated quickly in the tumor sites and its uptake reached a maximum of 3.02 ± 0.42% ID/g after 1 h i.v. injection. The specificity of [18F]F-CRI1 was confirmed both in in vitro cell uptake and in vivo PET imaging by blocking studies. Our findings suggest that [18F]F-CRI1 may be a potential agent for visualizing STING in the tumor microenvironment.


Assuntos
Radioisótopos de Flúor , Neoplasias , Humanos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Interferons , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA