Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Dis Model ; 6: 643-663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869909

RESUMO

Nonpharmaceutical interventions (NPIs), particularly contact tracing isolation and household quarantine, play a vital role in effectively bringing the Coronavirus Disease 2019 (COVID-19) under control in China. The pairwise model, has an inherent advantage in characterizing those two NPIs than the classical well-mixed models. Therefore, in this paper, we devised a pairwise epidemic model with NPIs to analyze COVID-19 outbreak in China by using confirmed cases during February 3rd-22nd, 2020. By explicitly incorporating contact tracing isolation and family clusters caused by household quarantine, our model provided a good fit to the trajectory of COVID-19 infections. We calculated the reproduction number R = 1.345 (95% CI: 1.230 - 1.460) for Hubei province and R = 1.217 (95% CI: 1.207 - 1.227) for China (except Hubei). We also estimated the peak time of infections, the epidemic duration and the final size, which are basically consistent with real observation. We indicated by simulation that the traced high-risk contacts from incubated to susceptible decrease under NPIs, regardless of infected cases. The sensitivity analysis showed that reducing the exposure of the susceptible and increasing the clustering coefficient bolster COVID-19 control. With the enforcement of household quarantine, the reproduction number R and the epidemic prevalence declined effectively. Furthermore, we obtained the resumption time of work and production in China (except Hubei) on 10th March and in Hubei at the end of April 2020, respectively, which is broadly in line with the actual time. Our results may provide some potential lessons from China on the control of COVID-19 for other parts of the world.

2.
Phys Rev E ; 102(6-1): 062422, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466063

RESUMO

Transient or sustained permeability transition pore (PTP) opening is important in normal physiology or cell death, respectively. These are closely linked to Ca^{2+} and reactive oxygen species (ROS). The entry of Ca^{2+} into mitochondria regulates ROS production, and both Ca^{2+} and ROS trigger PTP opening. In addition to this feedforward loop, there exist four feedback loops in the Ca^{2+}-ROS-PTP system. ROS promotes Ca^{2+} entering (F1) and induces further ROS generation (F2), forming two positive feedback loops. PTP opening results in the efflux of Ca^{2+} (F3) and ROS (F4) from the mitochondria, forming two negative feedback loops. Owing to these complexities, we construct a mathematical model to dissect the roles of these feedback loops in the dynamics of PTP opening. The qualitative agreement between simulation results and recent experimental observations supports our hypothesis that under physiological conditions the PTP opens in an oscillatory state, while under pathological conditions it opens in a high steady state. We clarify that the negative feedback loops are responsible for producing oscillations, wherein F3 plays a more prominent role than F4; whereas the positive feedback loops are beneficial for maintaining oscillation robustness, wherein F1 has a more dominant role than F2. Furthermore, we manifest that the proper increase in negative feedback strength or decrease in positive feedback strength not only facilitates the occurrence of oscillations and thus protects the system against a high steady state, but also assists in lowering the oscillation peak. This study may provide potential therapeutic strategies in treating neurodegenerative diseases due to PTP dysfunction.


Assuntos
Cálcio/metabolismo , Retroalimentação Fisiológica , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
3.
ACS Omega ; 4(22): 20000-20004, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788634

RESUMO

Many chemical and physical equilibrium conditions can be determined from minimizing the Gibbs free energies of the system. Efficient analytical representations of the entropy and Gibbs free energy of carbonyl sulfide remain elusive in the communality of science and engineering. Here, we report two analytical representations of the entropy and Gibbs free energy for carbonyl sulfide, and the prediction procedures only involve six molecular constants of the carbonyl sulfide molecule. In the temperature range from 300 to 6000 K, the average relative deviations of the predicted molar entropy and reduced Gibbs free energy values of carbonyl sulfide from the National Institute of Standards and Technology database are arrived at 0.150 and 0.189%, respectively.

4.
ACS Omega ; 4(21): 19193-19198, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763543

RESUMO

We first report three reliable analytical expressions of the entropy, enthalpy and Gibbs free energy of carbon dioxide (CO2) and perform predictions of these three thermodynamic quantities on the basis of the proposed analytical expressions and in terms of experimental values of five molecular constants for CO2. The average relative deviations of the calculated values from the National Institute of Standards and Technology database over the temperature range from 300 to 6000 K are merely 0.053, 0.95, and 0.070%, respectively, for the entropy, enthalpy, and Gibbs free energy. The present predictive expressions are away from the utilization of plenty of experimental spectroscopy data and are applicable to treat CO2 capture and storage processes.

5.
Front Neurol ; 10: 394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068889

RESUMO

Mesial temporal lobe epilepsy (MTLE), one of the most common types of refractory focal epilepsy, has shown white matter abnormalities both within and beyond the temporal lobe. In particular, the white matter abnormalities in the ipsilateral hemisphere are more obvious than those in the contralateral hemisphere in MTLE, that is, the abnormalities present asymmetrical characteristics. However, very few studies have characterized the white matter microstructure asymmetry in MTLE patients specifically. Thus, we performed diffusion tensor imaging (DTI) to investigate the white matter microstructure asymmetries of patients with MTLE with unilateral hippocampal sclerosis (MTLE-HS). We enrolled 25 MTLE-HS (left MTLE-HS group, n = 13; right MTLE-HS group, n = 12) and 26 healthy controls (HC). DTI data were analyzed by tract-based spatial statistics (TBSS) to test the hemispheric differences across the entire white matter skeleton. We also conducted a two-sample paired t-test for 21 paired region of interests (ROIs) parceled on the basis of the ICBM-DTI-81 white-matter label atlas of bilateral hemispheres to test the hemispheric differences. An asymmetry index (AI) was calculated to further quantify the differences between the left and right paired-ROIs. It was found that the asymmetries of white matter skeletons were significantly lower in the MTLE-HS groups than in the HC group. In particular, the asymmetry traits were moderately reduced in the RMTLE-HS group and obviously reduced in the LMTLE-HS group. In addition, AI was significantly different in the RMTLE-HS group from the LMTLE-HS or HC group in the limbic system and superior longitudinal fasciculus (SLF). The current study found that the interhemispheric white matter asymmetries were significantly reduced in the MTLE-HS groups than in the HC group. The interhemispheric white matter asymmetries are distinctly affected in left and right MTLE-HS groups. The differences in AI among RMTLE-HS, LMTLE-HS, and HC involved the limbic system and SLF, which may have some pragmatic implications for the diagnosis of MTLE and differentiating LMTLE-HS from RMTLE-HS.

6.
J Math Biol ; 73(6-7): 1561-1594, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27084186

RESUMO

In the face of serious infectious diseases, governments endeavour to implement containment measures such as public vaccination at a macroscopic level. Meanwhile, individuals tend to protect themselves by avoiding contacts with infections at a microscopic level. However, a comprehensive understanding of how such combined strategy influences epidemic dynamics is still lacking. We study a susceptible-infected-susceptible epidemic model with imperfect vaccination on dynamic contact networks, where the macroscopic intervention is represented by random vaccination of the population and the microscopic protection is characterised by susceptible individuals rewiring contacts from infective neighbours. In particular, the model is formulated both in populations without and then with demographic effects (births, deaths, and migration). Using the pairwise approximation and the probability generating function approach, we investigate both dynamics of the epidemic and the underlying network. For populations without demography, the emerging degree correlations, bistable states, and oscillations demonstrate the combined effects of the public vaccination program and individual protective behavior. Compared to either strategy in isolation, the combination of public vaccination and individual protection is more effective in preventing and controlling the spread of infectious diseases by increasing both the invasion threshold and the persistence threshold. For populations with additional demographic factors, we investigate temporal evolution of infected individuals and infectious contacts, as well as degree distributions of nodes in each class. It is found that the disease spreads faster but is more restricted in scale-free networks than in the Erdös-Rényi ones. The integration between vaccination intervention and individual rewiring may promote epidemic spreading due to the birth effect. Moreover, the degree distributions of both networks in the steady state is closely related to the degree distribution of newborns, which leads to uncorrelated connectivity. All the results demonstrate the importance of both local protection and global intervention, as well as the demographic effects. Our work thus offers a more comprehensive description of disease containment.


Assuntos
Controle de Doenças Transmissíveis/métodos , Epidemias/prevenção & controle , Modelos Biológicos , Saúde Pública/métodos , Vacinação , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-23496574

RESUMO

Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.


Assuntos
Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Modelos Teóricos , Modelos de Riscos Proporcionais , Vacinação/estatística & dados numéricos , Viroses/epidemiologia , Viroses/prevenção & controle , Simulação por Computador , Humanos , Incidência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA