Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0130347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26135459

RESUMO

UNLABELLED: Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. HIGHLIGHTS: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.


Assuntos
Anopheles/genética , Genoma de Inseto , Proteínas de Insetos/genética , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores de Galanina/genética , Receptores de Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Anopheles/classificação , Anopheles/metabolismo , Sinalização do Cálcio , Evolução Molecular , Corpo Adiposo/química , Corpo Adiposo/metabolismo , Feminino , Expressão Gênica , Glucose/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/química , Camundongos , Dados de Sequência Molecular , Família Multigênica , Ovário/química , Ovário/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Galanina/química , Receptores de Galanina/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Reprodução/genética , Alinhamento de Sequência , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA